Abstract
We introduce FaceGPT, a self-supervised learning framework for Large
Vision-Language Models (VLMs) to reason about 3D human faces from images and
text. Typical 3D face reconstruction methods are specialized algorithms that
lack semantic reasoning capabilities. FaceGPT overcomes this limitation by
embedding the parameters of a 3D morphable face model (3DMM) into the token
space of a VLM, enabling the generation of 3D faces from both textual and
visual inputs. FaceGPT is trained in a self-supervised manner as a model-based
autoencoder from in-the-wild images. In particular, the hidden state of LLM is
projected into 3DMM parameters and subsequently rendered as 2D face image to
guide the self-supervised learning process via image-based reconstruction.
Without relying on expensive 3D annotations of human faces, FaceGPT obtains a
detailed understanding about 3D human faces, while preserving the capacity to
understand general user instructions. Our experiments demonstrate that FaceGPT
not only achieves high-quality 3D face reconstructions but also retains the
ability for general-purpose visual instruction following. Furthermore, FaceGPT
learns fully self-supervised to generate 3D faces based on complex textual
inputs, which opens a new direction in human face analysis.