
230 CHAPTER 6. DECIDABLE LOGICS

6.2 Linear Arithmetic

There are several ways of introducing linear arithmetic and in particular its
syntax. I start with a syntax that already contains −, ≤, <, ≥, 6≈ and Q. All
these functions and relations are indeed expressible by first-order formulas over
0, 1, ≈, and >. For the semantics there are two approaches. Either providing
axioms, i.e., closed formulas, for the above symbols and then considering all
algebras satisfying the axioms, or fixing one particular algebra or a class of
algebras. For this chapter I start with a rich syntax and a semantics based on a
fixed algebra.

Definition 6.2.1 (LA Syntax). The syntax of LA is

ΣLA = ({LA}, {0, 1,+,−} ∪Q, {≤, <, 6≈, >,≥})

where − is unitary and all other symbols have the usual arities.

Terms and formulas over ΣLA are built in the classical free first-order way,
see Section 3.1. All first-order notions, i.e., terms, atoms, equations, literals,
clauses, etc. carry over to LA formulas. The atoms and terms built over the LA
signature are written in their standard infix notation, i.e., I write 3 + 5 instead
of +(3, 5). Note that the signature does not contain multiplication. A term 3x
is just an abbreviation for a term x+ x+ x.
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For the semantics I start with considering as the domain the rationals, Q. As
long as coefficients are from the integers, with respect to the satisfiability, valid-
ity of a formula the rationals cannot be distinguished from the reals. Restricting
the domain from the rationals to the integers, however, results in a difference
in satisfiability, validity of a formula, in general. In this case the signature is
restricted to integer constants as well.

Definition 6.2.2 (Linear Rational Arithmetic Standard Semantics). The ΣLA

algebra ALRA is defined by LAALRA = Q and all other signature symbols are
assigned the standard interpretations over the rationals.

Due to the expressive LA language there is no need for negative literals,
because (¬ <)ALRA = (≥)ALRA , (¬ >)ALRA = (≤)ALRA , and (¬ ≈)ALRA = ( 6≈
)ALRA .

Note the difference between the above standard semantics over ΣLA and the
free first-order semantics over ΣLA, Definition 3.2.1. The equation 3 + 4 ≈ 5
has a model in the free first-order semantics, hence it is satisfiable, whereas in
the standard model of linear rational arithmetic, Definition 6.2.2, the equation
3 + 4 ≈ 5 is false. In addition, with respect to the standard LRA semantics
the definitions of validity, satisfiability coincide with truth and the definition of
unsatisfiability coincides with falsehood. This is the result of a single algebra
semantics.

6.2.1 Fourier-Motzkin Quantifier Elimination

It is decidable whether a first-order formula over ΣLA is true or false in the
standard LRA semantics. This was first discovered in 1826 by J. Fourier and
re-discovered by T. Motzkin in 1936 and is called FM for short. Note that
validity of a ΣLA formula with respect to the standard semantics is undecidable,
Exercise ??.

Similar to Congruence Closure, Section 6.1, the starting point of the proce-
dure is a conjunction of atoms without atoms of the form 6≈. These will eventu-
ally be replaced by a disjunction, i.e., an atom t 6≈ s is replaced by t < s∨ t > s.

Every atom over the variables x, y1, . . . , yn can be converted into an equiva-
lent atom x ◦ t[~y] or 0 ◦ t[~y], where ◦ ∈ {<,>,≤,≥,≈, 6≈} and t[~y] has the form∑
i qi · yi + q0 where qi ∈ Q. In other words, a variable x can be either isolated

on one side of the atom or eliminated completely. This is the starting point of
the FM calculus deciding a conjunction of LA atoms without 6≈ modulo the
isolation of variables and the reduction of ground formulas to >, ⊥.

The calculus operates on a set of atoms N . The normal forms are conjunc-
tions of atoms s◦t where s, t do not contain any variables. These can be obviously
eventually reduced to > or ⊥. The FM calculus consists of two rules:

Substitute N ] {x ≈ t} ⇒FM N{x 7→ t}
provided x does not occur in t

Eliminate N ]
⋃
i{x ◦1i ti} ]

⋃
j{x ◦2j sj} ⇒FM N ∪

⋃
i,j{ti ◦i.j sj}
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provided x does not occur in N nor in the ti, sj , ◦1i ∈ {<,≤}, ◦2j ∈ {>,≥}, and

◦i,j = > if ◦1i = < or ◦2j = >, and ◦i,j = ≥ otherwise

If all variables in N are implicitly existentially quantified, i.e., N stands
for ∃~x.N , then the above two rules constitute a sound and complete decision
procedure for conjunctions of LA atoms without 6≈.

Lemma 6.2.3 (FM Termination on a Conjunction of Atoms). FM terminates
on a conjunction of atoms.

Proof. Any rule applications strictly reduces the number of variables.

Lemma 6.2.4 (FM Soundness and Completeness on a Conjunction of Atoms).
N ⇒∗FM > iff ALRA |= ∃~x.N . N ⇒∗FM ⊥ iff ALRA 6|= ∃~x.N .

Proof. ⇒: Assume that ALRA(β) |= N for some β. Proof by case analysis on
the two rules. For rule Substitute obviously ALRA(β)(x) = ALRA(β)(t) hence
ALRA(β) |= N{x 7→ t}. For rule Eliminate obviously ALRA(β)(x)◦1iALRA(β)(ti)
and ALRA(β)(x) ◦2j ALRA(β)(sj). A case analysis on ◦1i , ◦2j yields ALRA(β) |=
ti ◦i.j sj for all i, j.
⇐: Again by a case analysis on the rules. For rule Substitute if ALRA(β) |=

N{x 7→ t} then ALRA(β[x 7→ ALRA(β)(t)]) |= N ] {x ≈ t}. For rule Elim-
inate if ALRA(β) |= N ∪

⋃
i,j{ti ◦i.j sj} then ALRA(β[x 7→ 1

2 (min(∪i{ti}) +

max(∪j{sj}))] |= N ]
⋃
i{x ◦1i ti} ]

⋃
j{x ◦2j sj}.

The FM calculus on conjunctions of atoms can be extended to arbitrary
closed LRA first-order formulas φ. I always assume that different quantifier oc-
currences in φ bind different variables. This can always be obtained by renaming
one variable. The first step is to eliminate >, ⊥ from φ and to transform φ in
negation normal form, see Section 3.9. The resulting formula only contains the
operators ∀, ∃, ∧, ∨, ¬, where all negation symbols occur in front of atoms.
Then the following rule can be used to remove the negation symbols as well:

ElimNeg χ[¬ s ◦1 t]p ⇒FM χ[s ◦2 t]p
where the pairs (◦1, ◦2) are given by pairs (<,≥), (≤, >), (≈, 6≈) and their sym-
metric variants

The above two FM rules on conjunctions cannot cope with atoms s 6≈ t, so
they are eliminated as well:

Elim 6≈ χ[s 6≈ t]p ⇒FM χ[s < t ∨ s > t]p

The next step is to compute a Prenex Normal Form, a formula
{∃,∀}x1 . . . {∃,∀}xn.φ where φ does not contain any quantifiers. This can be
done by simply applying the mini-scoping rules, see Section 3.9, in the opposite
direction:
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Prenex1 χ[(∀x.ψ1) ◦ ψ2]p ⇒FM χ[∀x.(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

Prenex2 χ[(∃x.ψ1) ◦ ψ2]p ⇒FM χ[∃x.(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

Prenex3 χ[(∀x.ψ1) ∧ (∀y.ψ2)]p ⇒FM χ[∀x.(ψ1 ∧ ψ2{y 7→ x})]p

Prenex4 χ[(∃x.ψ1) ∨ (∃y.ψ2)]p ⇒FM χ[∃x.(ψ1 ∨ ψ2{y 7→ x})]p

where Prenex3 and Prenex4 are preferred over Prenex1 and Prenex2. Finally,
for the resulting formula {∃,∀}x1 . . . {∃,∀}xn.φ in prenex normal form the FM
algorithm computes a DNF of φ by exhaustively applying the rule PushConj,
Section 2.5.2. The result is a formula {∃,∀}x1 . . . {∃,∀}xn.φ where φ is a DNF
of atoms without containing an atom of the form s 6≈ t. All the above formulas
transformations are equivalence preserving. Therefore, to each conjunct of φ
the above two FM rules decide the conjunct, if all variables are existentially
quantified. This is the final obstacle in order to obtain the FM decision procedure
for arbitrary formulas.

It is solved by considering the quantifiers iteratively in an innermost way.
For the formula {∃,∀}x1 . . . {∃,∀}xn.φ always the innermost quantifier {∃,∀}xn
is considered. If it is an existential quantifier, ∃xn, then the FM rules Sub-
stitute, Eliminate are applied to the variable xn for each conjunct Ci of
φ = C1∨ . . .∨Cn. The result is a formula {∃,∀}x1 . . . {∃,∀}xn−1.(C

′
1∨ . . .∨C ′n)

which is again in prenex DNF. Furthermore, by Lemma 6.2.4 it is equivalent to
{∃,∀}x1 . . . {∃,∀}xn.φ. If the innermost quantifier is a universal quantifier ∀xn,
then the formula is replaced by {∃,∀}x1 . . . {∃,∀}xn−1¬∃xn.¬φ and the above
steps for negation normal form and DNF are repeated for ¬φ resulting in an
equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1¬∃xn.φ′ where φ′ is in DNF and does
not contain negation symbols nor atoms s 6≈ t. Then the FM rules Substitute,
Eliminate are applied to the variable xn for each conjunct Ci of φ′ = C1∨. . .∨Cn.
The result is an equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1.¬(C ′1 ∨ . . . ∨ C ′n).
Finally, the above steps for negation normal form and DNF are repeated for
¬(C ′1 ∨ . . . ∨ C ′n) resulting in an equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1.φ

′′

where φ′ is in DNF and does not contain negation symbols nor atoms s 6≈ t.
This completes for FM decision procedure for LRA formulas.

Every LRA formula can by reduced to > or ⊥ via the FM decision procedure.
Therefore LRA is called a complete theory, i.e., every closed formula over the
signature of LRA is either true or false.

LA formulas over the rationals and over the reals are indistinguishable by
first-order formulas over the signature of LRA. These properties do not hold for
extended signatures, e.g., then additional free symbols are introduced. Further-
more, FM is no decision procedures over the integers, even if the LA syntax is
restricted to integer constants.
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The complexity of the FM calculus depends mostly on the quantifier alterna-
tions in {∃,∀}x1 . . . {∃,∀}xn.φ. In case an existential quantifier ∃ is eliminated,
the formula size grows worst-case quadratically, therefore O(n2) runtime. For
m quantifiers ∃ . . . ∃: a naive implementation needs worst-case O(n2m) runtime.
It is not known whether an optimized implementation with simply exponential
runtime is possible. If there are m quantifier alternations ∃∀∃∀ . . . ∃∀, a CNF to
DNF conversion is required after each step. Each conversion has a worst-case
exponential run time, see Section 2.5. Therefore, the overall procedure has a
worst-case non-elementary runtime.

I

There are meanwhile more efficient decision procedures for the theory
LRA known, e.g., see Section 6.2.3. There are problems occurring in
practice where the elimination of a variable via FM results in an only

linear increase in size. In such cases FM is still valuable. Many state-of-the-art
LRA procedures actually calculate the size of the formula after eliminating a
variable via FM and redundancy elimination and decide on this basis whether
FM is applied or not.




