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4.4 Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion is to transform
E into an equivalent convergent set R of rewrite rules. If R is finite this yields a
decision procedure for E. For ensuring termination the calculus fixes a reduction
ordering � and constructs R in such a way that →R ⊆ �, i.e., l � r for every
l→ r ∈ R. For ensuring confluence the calculus checks whether all critical pairs
are joinable.

The completion procedure itself is presented as a set of abstract rewrite
rules working on a pair of equations E and rules R: (E0;R0) ⇒KBC (E1;R1)
⇒KBC (E2;R2) ⇒KBC . . .. The initial state is (E0, ∅) where E = E0 contains
the input equations. If ⇒KBC successfully terminates then E is empty and R is
the convergent rewrite system for E0. For each step (E;R) ⇒KBC (E′;R′) the
equational theories of E ∪ R and E′ ∪ R′ agree: ≈E∪R = ≈E′∪R′ . By cp(R) I
denote the set of critical pairs between rules in R.

Orient (E ] {s
.
≈ t};R) ⇒KBC (E;R ∪ {s→ t})

if s � t

Delete (E ] {s ≈ s};R) ⇒KBC (E;R)

Deduce (E;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ cp(R)

Simplify-Eq (E ] {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u

R-Simplify-Rule (E;R ] {s→ t}) ⇒KBC (E;R ∪ {s→ u})
if t→R u

L-Simplify-Rule (E;R ] {s→ t}) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u using a rule l→ r ∈ R so that s A l, see below.

Trivial equations cannot be oriented and since they are not needed they can
be deleted by the Delete rule. The rule Deduce turns critical pairs between rules
in R into additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t. The simplification rules are not needed but serve as
reduction rules, removing redundancy from the state. Simplification of the left-
hand side may influence orientability and orientation of the result. Therefore, it
yields an equation. For technical reasons, the left-hand side of s → t may only
be simplified using a rule l→ r, if l→ r cannot be simplified using s→ t, that
is, if s A l, where the encompassment quasi-ordering A∼ is defined by s A∼ l if

s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.
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Lemma 4.4.1. A is a well-founded strict partial ordering.

Lemma 4.4.2. If (E;R)⇒KBC (E′;R′), then ≈E∪R = ≈E′∪R′ .

Lemma 4.4.3. If (E;R)⇒KBC (E′;R′) and →R ⊆ �, then →R′ ⊆ �.

Proposition 4.4.4 (Knuth-Bendix Completion Correctness). If the completion
procedure on a set of equations E is run, different things can happen:

1. A state where no more inference rules are applicable is reached and E is
not empty. ⇒ Failure (try again with another ordering?)

2. A state where E is empty is reached and all critical pairs between the
rules in the current R have been checked.

3. The procedure runs forever.

In order to treat these cases simultaneously some definitions are needed:

Definition 4.4.5 (Run). A (finite or infinite) sequence (E0;R0) ⇒KBC

(E1;R1) ⇒KBC (E2;R2) ⇒KBC . . . with R0 = ∅ is called a run of the
completion procedure with input E0 and �. For a run, E∞ =

⋃
i≥0Ei and

R∞ =
⋃
i≥0Ri.

Definition 4.4.6 (Persistent Equations). The sets of persistent equations of
rules of the run are E∗ =

⋃
i≥0

⋂
j≥iEj and R∗ =

⋃
i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn then E∗ = En and R∗ = Rn.

Definition 4.4.7 (Fair Run). A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every
critical pair between persisting rules is computed at some step of the derivation).

Goal: Show: If a run is fair and E∗ is empty then R∗ is convergent and
equivalent to E0. In particular: If a run is fair and E∗ is empty then ≈E0 =
≈E∞∪R∞ =↔∗E∞∪R∞ = ↓R∗ .

From now on, (E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . . is a fair
run and R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) so that s =
s0, t = sn and for all i ∈ {1, . . . , n} it holds:

1. si−1 ↔E∞ si or

2. si−1 →R∞ si or

3. si−1 R∞
← si.

The pairs (si−1, si) are called proof steps. A proof is called a rewrite proof in
R∗ if there is a k ∈ {0, . . . , n} so that si−1 →R∗ si for 1 ≤ i ≤ k and si−1 R∗

← si
for k + 1 ≤ i ≤ n.

Idea (Bachmair, Derschowitz, Hsiang): Define a well-founded ordering on
proofs so that for every proof that is not a rewrite proof in R∗ there is an
equivalent smaller proof. Consequence: For every proof there is an equivalent
rewrite proof in R∗. A cost c(si−1, si) is associated with every proof step as
follows:
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1. If si−1 ↔E∞ si then c(si−1, si) = ({si−1, si},−,−) where the first compo-
nent is a multiset of terms and − denotes an arbitrary (irrelevant) term.

2. If si−1 →R∞ si using l→ r then c(si−1, si) = ({si−1}, l, si).

3. If si−1 R∞
← si using l→ r then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographical combination of the multiset
extension of the reduction ordering �, the encompassment ordering A and the
reduction ordering �. The cost c(P ) of a proof P is the multiset of the cost of
its proof steps. The proof ordering �C compares the cost of proofs using the
multiset extension of the proof step ordering.

Lemma 4.4.8. �C is well-founded ordering.

Lemma 4.4.9. Let P be a proof in E∞ ∪R∞. If P is not a rewrite proof in R∗
then there exists an equivalent proof P ′ in E∞ ∪R∞ so that P �C P ′.

Proof. If P is not a rewrite proof in R∗ then it contains

1. a proof step that is in E∞ or

2. a proof step that is in R∞\R∗ or

3. a subproof si−1 R∗
← si → si+1 (peak).

It is shown that in all three cases the proof step or subproof can be replaced by
a smaller subproof:
Case 1.: A proof step using an equation s

.
≈ t is in E∞. This equation must be

deleted during the run.

If s
.
≈ t is deleted using Orient :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞ si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 2.: A proof step using a rule s→ t is in R∞\R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ R∞← si . . .

If s→ t is deleted using L-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .
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Case 3.: A subproof has the form si−1 R∗
← si →R∗ si+1.

If there is no overlap or a non-critical overlap:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 →∗R∗ s

′ ∗
R∗
← si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 ↔E∞ si+1 . . .

In all cases, checking that the replacement subproof is smaller than the
replaced subproof is routine.

Theorem 4.4.10 (KBC Soundness). Let (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . be a fair run and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

2. R∗ is equivalent to E0 and

3. R∗ is convergent.

Proof. 1. By well-founded induction on �C using the previous lemma.

2. Clearly, ≈E∞∪R∞ = ≈E0 . Since R∗ ⊆ R∞ this yields ≈R∗ ⊆ ≈E∞∪R∞ .
On the other hand, by 1. it holds that ≈E∞∪R∞ ⊆ ≈R∗ .

3. Since →R∗ ⊆ �, R∗ is terminating. By 1. it holds that R∗ is confluent.

Now using the proof of Theorem 3.15.2 termination of⇒KBC is undecidable.

Corollary 4.4.11 (KBC Termination). Termination of ⇒KBC is undecidable
for some given finite set of equations E.

Proof. Using exactly the construction of Theorem 3.15.2 it remains to be shown
that all computed critical pairs can be oriented. Critical pairs correspond-
ing to the search for a PCP solution result in equations fR(u(x), v(y)) ≈
fR(u′(x), v′(y)) or fR(u′(x), v′(x)) ≈ c. By chosing an appropriate ordering,
all these equations can be oriented. Thus ⇒KBC does not produce any unori-
entable equations. The rest follows from Theorem 3.15.2.




