
Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

By Theorem 4.1.11 the semantics of E and↔∗E coincide. In order
to decide↔∗E we need to turn→∗E into a confluent and
terminating relation.

If↔∗E is terminating then confluence is equivalent to local
confluence, see Newman’s Lemma, Lemma 1.6.6. Local
confluence is the following problem for TRS: if t1 E← t0 →E t2,
does there exist a term s so that t1 →∗E s ∗E← t2?

If the two rewrite steps happen in different subtrees (disjoint
redexes) then a repitition of the respective other step yields the
common term s.

If the two rewrite steps happen below each other (overlap at or
below a variable position) again a repetition of the respective
other step yields the common term s.

If the left-hand sides of the two rules overlap at a non-variable
position there is no ovious way to generate s.

November 13, 2024 340/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

More technically two rewrite rules l1 → r1 and l2 → r2 overlap if
there exist some non-variable subterm l1|p such that l2 and l1|p
have a common instance (l1|p)σ1 = l2σ2. If the two rewrite rules
do not have common variables, then only a single substitution is
necessary, the mgu σ of (l1|p) and l2.

November 13, 2024 341/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

4.2.1 Definition (Critical Pair)
Let li → ri (i = 1,2) be two rewrite rules in a TRS R without
common variables, i.e., vars(l1) ∩ vars(l2) = ∅. Let p ∈ pos(l1) be a
position so that l1|p is not a variable and σ is an mgu of l1|p and
l2. Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

November 13, 2024 342/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

4.2.2 Theorem (“Critical Pair Theorem”)
A TRS R is locally confluent iff all its critical pairs are joinable.

4.3.4 Theorem (TRS Termination)
A TRS R terminates if and only if there exists a reduction
ordering � so that l � r for every rule l → r ∈ R.

November 13, 2024 343/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion
is to transform E into an equivalent convergent set R of rewrite
rules. If R is finite this yields a decision procedure for E .

For ensuring termination the calculus fixes a reduction ordering �
and constructs R in such a way that→R ⊆ �, i.e., l � r for every
l → r ∈ R.

For ensuring confluence the calculus checks whether all critical
pairs are joinable.

November 13, 2024 344/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

The completion procedure itself is presented as a set of abstract
rewrite rules working on a pair of equations E and rules R:
(E0;R0)⇒KBC (E1;R1)⇒KBC (E1;R2)⇒KBC

The initial state is (E0, ∅) where E = E0 contains the input
equations.

If⇒KBC successfully terminates then E is empty and R is the
convergent rewrite system for E0.

For each step (E ; R)⇒KBC (E ′; R′) the equational theories of
E ∪ R and E ′ ∪ R′ agree: ≈E∪R = ≈E ′∪R′ . By cp(R) I denote the
set of critical pairs between rules in R.

November 13, 2024 345/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Orient (E] {s
.
≈ t}; R) ⇒KBC (E ; R ∪ {s → t})

if s � t

Delete (E] {s ≈ s}; R) ⇒KBC (E ; R)

Deduce (E ; R) ⇒KBC (E ∪ {s ≈ t}; R)

if 〈s, t〉 ∈ cp(R)

November 13, 2024 346/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Simplify-Eq (E] {s
.
≈ t}; R) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u

R-Simplify-Rule (E ; R] {s → t}) ⇒KBC (E ; R ∪ {s → u})
if t →R u

L-Simplify-Rule (E ; R] {s → t}) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u using a rule l → r ∈ R so that s A l , see below.

November 13, 2024 347/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Trivial equations cannot be oriented and since they are not
needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in R into
additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t .

The simplification rules are not needed but serve as reduction
rules, removing redundancy from the state. Simplification of the
left-hand side may influence orientability and orientation of the
result. Therefore, it yields an equation. For technical reasons, the
left-hand side of s → t may only be simplified using a rule l → r ,
if l → r cannot be simplified using s → t , that is, if s A l , where
the encompassment quasi-ordering A∼ is defined by s A∼ l if
s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.

November 13, 2024 348/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

4.4.4 Proposition (Knuth-Bendix Completion Correctness)
If the completion procedure on a set of equations E is run,
different things can happen:

1. A state where no more inference rules are
applicable is reached and E is not empty. ⇒ Failure
(try again with another ordering?)

2. A state where E is empty is reached and all critical
pairs between the rules in the current R have been
checked.

3. The procedure runs forever.

November 13, 2024 349/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

4.4.5 Definition (Run)
A (finite or infinite) sequence
(E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . with R0 = ∅ is
called a run of the completion procedure with input E0 and �. For
a run, E∞ =

⋃
i≥0 Ei and R∞ =

⋃
i≥0 Ri .

4.4.6 Definition (Persistent Equations)
The sets of persistent equations of rules of the run are
E∗ =

⋃
i≥0
⋂

j≥i Ej and R∗ =
⋃

i≥0
⋂

j≥i Rj .

Note: If the run is finite and ends with En,Rn then E∗ = En and
R∗ = Rn.

November 13, 2024 350/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

4.4.7 Definition (Fair Run)
A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every critical pair
between persisting rules is computed at some step of the
derivation).

4.4.10 Theorem (KBC Soundness)
Let (E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . be a fair run
and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪ R∞ is equivalent to a rewrite
proof in R∗,

2. R∗ is equivalent to E0 and
3. R∗ is convergent.

November 13, 2024 351/588

Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Complexity

3.15.2 Theorem (Equational Logic Validity is Undecidable)
Validity of an equation modulo a set of equations is undecidable.

(Proof Scetch) Given a PCP with word lists (u1, . . . ,un) and
(v1, . . . , vn) over alphabet {a,b}, it is represented by two unary
functions ga and gb, constants ε, c,d , and a binary function fR ,
all over some sort S. Then a word pair ui , vi is encoded by the
equation fR(ui(x), vi(y)) ≈ fR(x , y) and the start state with the
empty word is encoded by equation fR(ε, ε) ≈ d and the final
state identifying two equal words different from ε by the equations
fR(ga(x),ga(x)) ≈ c, fR(gb(x),gb(x)) ≈ c. I call the set of these
equations E . Now the PCP over the two word lists has a solution
iff E |= c ≈ d .

November 13, 2024 352/588

