Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I investigate properties of a set of unit equations. For a set of unit equations I write E.

Full first-order clauses with equality are studied in the chapter on first-order superposition with equality. I recall certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit equations E and an additional equation $s \approx t$, does $E \models s \approx t$ hold?

As usual, all variables are implicitely universally quantified. The idea is to turn the equations E into a convergent term rewrite system (TRS) R such that the above problem can be solved by checking identity of the respective normal forms: $s \downarrow_R = t \downarrow_R$.

Showing $E \models s \approx t$ is as difficult as proving validity of any first-order formula, see the section on complexity.

4.0.1 Definition (Equivalence Relation, Congruence Relation)

An *equivalence* relation \sim on a term set $T(\Sigma, \mathcal{X})$ is a reflexive, transitive, symmetric binary relation on $T(\Sigma, \mathcal{X})$ such that if $s \sim t$ then $\mathsf{sort}(s) = \mathsf{sort}(t)$.

Two terms s and t are called *equivalent*, if $s \sim t$. An equivalence \sim is called a *congruence* if $s \sim t$ implies $u[s] \sim u[t]$, for all terms $s, t, u \in T(\Sigma, \mathcal{X})$. Given a term $t \in T(\Sigma, \mathcal{X})$, the set of all terms equivalent to t is called the *equivalence class of t by* \sim , denoted by $[t]_{\sim} := \{t' \in T(\Sigma, \mathcal{X}) \mid t' \sim t\}$.

If the matter of discussion does not depend on a particular equivalence relation or it is unambiguously known from the context, [t] is used instead of $[t]_{\sim}$. The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in $T(\Sigma,\mathcal{X})$ defined by the equivalence relation is called a *quotient by* \sim , denoted by $T(\Sigma,\mathcal{X})|_{\sim}:=\{[t]\mid t\in T(\Sigma,\mathcal{X})\}$. Let E be a set of equations, then \sim_E denotes the smallest congruence relation "containing" E, that is, $(I\approx r)\in E$ implies $I\sim_E r$. The equivalence class $[t]_{\sim_E}$ of a term t by the equivalence (congruence) \sim_E is usually denoted, for short, by $[t]_E$. Likewise, $T(\Sigma,\mathcal{X})|_E$ is used for the quotient $T(\Sigma,\mathcal{X})|_{\sim_E}$ of $T(\Sigma,\mathcal{X})$ by the equivalence (congruence) \sim_E .

4.1.1 Definition (Rewrite Rule, Term Rewrite System)

A rewrite rule is an equation $I \approx r$ between two terms I and r so that I is not a variable and $vars(I) \supseteq vars(r)$. A term rewrite system R, or a TRS for short, is a set of rewrite rules.

4.1.2 Definition (Rewrite Relation)

Let E be a set of (implicitly universally quantified) equations, i.e., unit clauses containing exactly one positive equation. The *rewrite* $relation \rightarrow_E \subseteq T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X})$ is defined by

 $s \to_E t$ iff there exist $(l \approx r) \in E, p \in pos(s)$, and matcher σ , so that $s|_D = l\sigma$ and $t = s[r\sigma]_D$.

Note that in particular for any equation $I \approx r \in E$ it holds $I \rightarrow_E r$, so the equation can also be written $I \rightarrow r \in E$.

Often $s = t \downarrow_R$ is written to denote that s is a normal form of t with respect to the rewrite relation \rightarrow_R . Notions $\rightarrow_R^0, \rightarrow_R^+, \rightarrow_R^*, \leftrightarrow_R^*$, etc. are defined accordingly, see Section 1.6.

An instance of the left-hand side of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the right-hand side of the rule.

A term rewrite system R is called *convergent* if the rewrite relation \rightarrow_R is confluent and terminating. A set of equations E or a TRS R is terminating if the rewrite relation \rightarrow_E or \rightarrow_R has this property. Furthermore, if E is terminating then it is a TRS.

A rewrite system is called *right-reduced* if for all rewrite rules $I \to r$ in R, the term r is irreducible by R. A rewrite system R is called *left-reduced* if for all rewrite rules $I \to r$ in R, the term I is irreducible by $R \setminus \{I \to r\}$. A rewrite system is called *reduced* if it is left- and right-reduced.

4.1.3 Lemma (Left-Reduced TRS)

Left-reduced terminating rewrite systems are convergent. Convergent rewrite systems define unique normal forms.

A reduction ordering is a well-founded rewrite ordering that is a strict ordering stable under substitutions and contexts.

4.1.4 Lemma (TRS Termination)

A rewrite system R terminates iff there exists a reduction ordering \succ so that $l \succ r$, for each rule $l \rightarrow r$ in R.

Let E be a set of universally quantified equations. A model $\mathcal A$ of E is also called an E-algebra. If $E \models \forall \vec x (s \approx t)$, i.e., $\forall \vec x (s \approx t)$ is valid in all E-algebras, this is also denoted with $s \approx_E t$. The goal is to use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically: $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$.

Let E be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of E:

Reflexivity $E \Rightarrow_{\mathsf{F}} E \cup \{t \approx t\}$

Symmetry $E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t' \approx t\}$

Transitivity $E \uplus \{t \approx t', t' \approx t''\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$

Congruence $E \uplus \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \Rightarrow_{\mathsf{E}} E \cup \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \cup \{f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)\}$ for any function $f : \mathsf{sort}(t_1) \times \dots \times \mathsf{sort}(t_n) \to S$ for some S

Instance $E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t\sigma \approx t'\sigma\}$ for any well-sorted substitution σ

4.1.5 Lemma (Equivalence of \leftrightarrow_F^* and \Rightarrow_F^*)

The following properties are equivalent:

- 1. $s \leftrightarrow_F^* t$
- 2. $E \Rightarrow_{\mathsf{F}}^* s \approx t$ is derivable.

where $E \Rightarrow_{F}^{*} s \approx t$ is an abbreviation for $E \Rightarrow_{F}^{*} E'$ and $s \approx t \in E'$.

4.1.6 Corollary (Convergence of E)

If a set of equations E is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_F = t \downarrow_F$.

4.1.7 Corollary (Decidability of \approx_E)

If a set of equations E is finite and convergent then \approx_E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations \leftrightarrow_E^* and \Rightarrow_E^* . What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

4.1.8 Definition (Quotient Algebra)

For sets of unit equations this is a *quotient algebra*: Let \mathcal{X} be a set of variables. For $t \in \mathcal{T}(\Sigma, \mathcal{X})$ let $[t] = \{t' \in \mathcal{T}(\Sigma, \mathcal{X})) \mid E \Rightarrow_{\mathbb{E}}^* t \approx t'\}$ be the *congruence class* of t. Define a Σ -algebra \mathcal{I}_E , called the *quotient algebra*, technically $\mathcal{T}(\Sigma, \mathcal{X})/E$, as follows: $S^{\mathcal{I}_E} = \{[t] \mid t \in \mathcal{T}_S(\Sigma, \mathcal{X})\}$ for all sorts S and $f^{\mathcal{I}_E}([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)]$ for $f : \mathsf{sort}(t_1) \times \ldots \times \mathsf{sort}(t_n) \to \mathcal{T} \in \Omega$ for some sort T.

4.1.9 Lemma (\mathcal{I}_E is an E-algebra)

 $\mathcal{I}_F = T(\Sigma, \mathcal{X})/E$ is an *E*-algebra.

4.1.10 Lemma (\Rightarrow_E is complete)

Let \mathcal{X} be a countably infinite set of variables; let $s, t \in T_S(\Sigma, \mathcal{X})$. If $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$, then $E \Rightarrow_F^* s \approx t$ is derivable.

4.1.11 Theorem (Birkhoff's Theorem)

Let \mathcal{X} be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in \mathcal{T}_{\mathcal{S}}(\Sigma, \mathcal{X})$:

- 1. $s \leftrightarrow_F^* t$.
- 2. $E \Rightarrow_{F}^{*} s \approx t$ is derivable.
- 3. $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$.
- 4. $\mathcal{I}_{F} \models \forall \vec{x} (s \approx t)$.