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Instance Generation (InstGen)

The idea of InstGen is to rely on a SAT solver. But instead of
doing an overall grounding, a single constant is substituted for all
variables and a satisfiability result of the SAT solver turned into
an interpretation for the overall clause set. This interpretation
either satisfies the clause st or triggers an inference via
instantiation, analogous to superposition.
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A closure is a pair clause, substitution: C · σ. A substitution σ is a
proper instantiator with respect to a literal L (clause C), if for
some variable x ∈ vars(L) (x ∈ vars(C)), xσ is not a variable. Let
� be a well-founded closure ordering satifying C · σ � D · γ if
Cσ = Dγ but Cρ = D for some proper instantiator ρ.
More specific clauses are smaller.
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The candidate model IN is inductively defined over the
well-founded closure ordering � with respect to a ground model
INα of the grounded clause set Nα. The ground clause set Nα is
constructed by mapping all variables in N to a distinguished
single constant α. Then if Nα is unsatisfiable, so is N. If Nα is
satisfiable, N is not necessarily satisfiable and IN lifts the model
INα of Nα to a candidate model for N. Satisfiability of the clause
set Nα can be more efficiently decided by a procedure for SAT,
e.g., a CDCL-based SAT solver.
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Similar to the model construction for superposition, suppose the
sets δD·σ have been defined for all closures D · σ smaller than
C · γ.

IC·γ :=
⋃

D·σ≺C·γ δD·σ

δC·γ :=


{Lγ} if Cγ is false in IC·γ

C · γ is the minimal representation of Cγ in N
L ∈ C and Lγ undefined in IC·γ and Lα ∈ INα

∅ otherwise
IN :=

⋃
C∈N δC·γ
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The inference rules are:

Falsify (N,>) ⇒IGEN (N,M)

where M = ⊥ if Nα is unsatisfiable and M = {L1, . . . ,Ln} if
{L1, . . . ,Ln} is a model for Nα

Instantiate (N ] {C ∨ A,D ∨ ¬B},M) ⇒IGEN
(N ] {C ∨ A,D ∨ ¬B, (C ∨ A)σ, (D ∨ ¬B)σ},>)

where M = {L1, . . . ,Ln}, σ = mgu(A,B), and σ is a proper
instantiator of A or B
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It is important that the grounding of Nα is obtained by substituting
the same constant α for all variables, for otherwise the calculus
becomes incomplete. For example, the two unit clauses
P(x , y);¬P(x , x) are unsatisfiable. A grounding P(a,b);¬P(a,a)
results in the model INα = {P(a,b);¬P(a,a)} but Instantiate is
not applicable, because the unifier {x 7→ y} is not a proper
instantiater for both literals.
The model M is actially not used in rule Instantiate. The proof of
the Theorem 3.16.4 shows that it is sufficient to consider a
minimal false clause C ∨ A or D ∨ ¬B with respect to IN , for the
inference.
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3.16.4 Theorem (Completeness of InstGen)
Let (N,>)⇒∗IGEN (N ′,M) and let (N ′,M) be a final state. If N is
satisfiable then M 6= ⊥ and IN′ |= N ′.

Redundancy can be defined analogoulsy to superposition as well.
A ground closure C · σ is redundant in a clause set N, if there are
closures C1 · σ1, . . . ,Cn · σn from clauses C1, . . . ,Cn from N such
that Ci · σi ≺ C · σ for all i and C1σ1, . . . ,Cnσn |= Cσ. A clause C
from N is redundant if all its ground closures C · σ are redundant.
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SCL: Clause Learning from Simple
Models

Lifting CDCL to first-order logic
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CDCL – quo vadis?

N = {P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q}

November 13, 2024 279/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

SCL Clause Learning from Simple
Models

The basic idea of SCL is to lift the principles of CDCL,
Section 2.9, to first-order logic:

1. operating wih respect to a partial model assumption
represented by a trail,

2. learning only non-redundant clauses out of false
clauses with respect to the trail,

3. finding models in case no conflict occurs.
It is called clause learning from simple models, because the trail
is restricted to ground literals.
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SCL: Simplified Problem State

(Γ; N; U; k ; D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– >: Trail building
– ⊥: N is refuted
– A conflict clause

Initially, the state for a first-order clause set N is (ε; N; ∅; 0;>).
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SCL – quo vadis?

N = {P(a) ∨Q(b), P(a) ∨ ¬Q(b), ¬P(x) ∨Q(x), ¬P(x) ∨ ¬Q(x)}
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SCL: Motivation

SCL employs a trail consisting of ground literals only:
deciding falsity of a first-order clause with variables can be
done practically efficiently and
different ground literals don’t have common instances resulting
in efficient trail operations.
Still, non-redundant clauses with variables can be learned

– Find falsified ground clause
– Guide resolution on the clause level (with variables)
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Resolution learns non-ground
clauses

N = {P(x) ∨Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨Q(x), ¬P(x) ∨ ¬Q(b)}
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SCL: Simplified Problem State

(Γ; N; U; k ; D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– >: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ε; N; ∅; 0;>).
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SimpPropagate(Γ; N; U; k ;>) ⇒SCL (Γ,Lσ(C∨L)·σ; N; U; k ;>)

provided C ∨ L ∈ (N ∪ U) technicalities missing, see later..., (C ∨ L)σ is
ground, Cσ is false under Γ, and Lσ is undefined in Γ

Conflict (Γ; N; U;β; k ;>) ⇒SCL (Γ; N; U;β; k ; D · σ)

provided D ∈ (N ∪U), Dσ false in Γ for a grounding substitution σ
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Resolve (Γ,Lδ(C∨L)·δ; N; U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ,Lδ(C∨L)·δ; N; U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

SimpBacktrack (Γ comp(Lσ)k ; N; U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ′; N; U ∪ {D ∨ L};β; j ;>)

provided a lot of technicalities...
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SCL learns non-ground clauses

N = {P(x) ∨Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨Q(x), ¬P(x) ∨ ¬Q(b)}
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Recall: CDCL soundness

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M; N; U; k ;>) where M |= N
and (M; N; U; k ;⊥) where N is unsatisfiable.
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First problems in first-order

N = {P(a), ¬P(x) ∨ P(f (x))}
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First-order Herbrand models are infinite in general
In SCL:

– Restrict the reasoning with respect to some ground literal β
– Require that any trail literal is smaller than β
– Use a well-founded, total, strict ordering ≺β (e.g. KBO)

Goal: Achieve termination
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SCL: Problem State

(Γ; N; U; β; k ; D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
β: Limiting literal
k : Level
D: State

– >: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ε; N; ∅;β; 0;>).
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SCL: Stuck states

N = {P(a), ¬P(x) ∨ P(f (x))}
set β = P(f (f (a))), hence exactly P(a) ≺β β and P(f (a)) ≺β β
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Exhaustive Propagation vs. First-
order logic

In propositional logic: Propagation instead of deciding is often a
good idea.

In FOL: Exhaustively propagating all ground instances is a very
bad idea:

N ′ = {P(1,0, x1, . . . , xn), Q ∨ ¬R, Q ∨ R, ¬Q ∨ R, ¬Q ∨ ¬R}
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3.16.23 Example (Comparing Proof Length Depending on
Clause Propagation)

Let i be a positive integer and consider the clause set N i with one
predicate P of arity i consisting of the following clauses, where
we write x̄ , 0̄ and 1̄ to denote sequences of the appropriate
length of variables and constants to meet the arity of P:

P(0̄) ¬P(1̄)

and i clauses of the form
¬P(x̄ ,0, 1̄) ∨ P(x̄ ,1, 0̄)

where the length of 1̄ varies between 0 and i − 1. The example
encodes an i-bit counter. An SCL run with exhaustive
propagation on this clause set finds a conflict after O(2i)
propagations without any application of Decide.

November 13, 2024 295/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Example ctd.

N4 = {

1 : P(0,0,0,0)
2 : ¬P(x1, x2, x3,0) ∨ P(x1, x2, x3,1)
3 : ¬P(x1, x2,0,1) ∨ P(x1, x2,1,0)
4 : ¬P(x1,0,1,1) ∨ P(x1,1,0,0)
5 : ¬P(0,1,1,1) ∨ P(1,0,0,0)
6 : ¬P(1,1,1,1)

}

2.2 Res 3.1 7 : ¬P(x1, x2,0,0) ∨ P(x1, x2,1,0)
7.2 Res 2.1 8 : ¬P(x1, x2,0,0) ∨ P(x1, x2,1,1)
8.2 Res 4.1 9 : ¬P(x1,0,0,0) ∨ P(x1,1,0,0)
9.2 Res 8.1 10 : ¬P(x1,0,0,0) ∨ P(x1,1,1,1)
10.2 Res 5.1 11 : ¬P(0,0,0,0) ∨ P(1,0,0,0)
11.2 Res 10.1 12 : ¬P(0,0,0,0) ∨ P(1,1,1,1)
12.1 Res 6.1 13 : ⊥

Can be simulated with SCL, but not with exhaustive propagation
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Propagate (Γ; N; U;β; k ;>) ⇒SCL
(Γ,Lσ(C0∨L)δ·σ; N; U;β; k ;>)

provided C ∨ L ∈ (N ∪U), C = C0 ∨C1, C1σ = Lσ ∨ · · · ∨ Lσ, C0σ
does not contain Lσ, δ is the mgu of the literals in C1 and L,
(C ∨ L)σ is ground, (C ∨ L)σ ≺β {β}, C0σ is false under Γ, and Lσ
is undefined in Γ

The rule Propagate applies exhaustive factoring to the
propagated literal with respect to the grounding substitution σ
and annotates the factored clause to the propagation literal on
the trail.

Decide (Γ; N; U;β; k ;>) ⇒SCL
(Γ,Lσk+1; N; U;β; k + 1;>)

provided L ∈ C for a C ∈ (N ∪U), Lσ is a ground literal undefined
in Γ, and Lσ ≺β β
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Conflict (Γ; N; U;β; k ;>) ⇒SCL (Γ; N; U;β; k ; D · σ)

provided D ∈ (N ∪U), Dσ false in Γ for a grounding substitution σ

These rules construct a (partial) model via the trail Γ for N ∪ U
until a conflict, i.e., a false clause with respect to Γ is found or all
ground atoms smaller β are defined in M and M |= grd(N)≺β .
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Guaranteed Termination
– Only ground literals ≺β β considered
– There are only finitely many.

Choosing the right β is crucial
– For some fragments, this gives completeness:

Bernays-Schoenfinkel
– In general: Every fragment with finite models

Next up: Conflict resolution rules
Before any conflict resolution step, we assume that the respective clauses are renamed

such that they do not share any variables and that the grounding substitutions of closures

are adjusted accordingly.
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Skip (Γ,L; N; U;β; k ; D · σ) ⇒SCL
(Γ; N; U;β; k − i ; D · σ)

provided comp(L) does not occur in Dσ, if L is a decision literal
then i = 1, otherwise i = 0

Factorize (Γ; N; U;β; k ; (D ∨ L ∨ L′) · σ) ⇒SCL
(Γ; N; U;β; k ; (D ∨ L)η · σ)

provided Lσ = L′σ, η = mgu(L,L′)
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Resolve (Γ,Lδ(C∨L)·δ; N; U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ,Lδ(C∨L)·δ; N; U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

Backtrack (Γ0,K , Γ1, comp(Lσ)k ; N; U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ0; N; U ∪ {D ∨ L};β; j ;>)

provided Dσ is of level i ′ < k , and Γ0,K is the minimal trail
subsequence such that there is a grounding substitution τ with
(D ∨ L)τ is false in Γ0,K but not in Γ0, and Γ0 is of level j

The clause D ∨ L added by the rule Backtrack to U is called a
learned clause.
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⊥ can only be derived by Resolve (or be present already in N)
=⇒ The generation of ⊥ is a resolution refutation
Freedom with respect to decisions and factorizations
Literals are not removed during resolution (eventually, Skip
removes the literal from Γ)
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3.16.8 Definition (Sound States)
A state (Γ; N; U;β; k ; D) is sound if the following conditions hold:

1. Γ is a consistent sequence of annotated ground
literals, i.e. for a ground literal L it cannot be that
L ∈ Γ and ¬L ∈ Γ

2. for each decomposition Γ = Γ1,LσC∨L·σ, Γ2 we have
that Cσ is false under Γ1 and Lσ is undefined under
Γ1, N ∪ U |= C ∨ L,

3. for each decomposition Γ = Γ1,Lk , Γ2 we have that L
is undefined in Γ1,

4. N |= U,
5. if D = C · σ then Cσ is false under Γ and N |= C. In

particular, grd≺ββ(N) |= Cσ,
6. for any L ∈ Γ we have L ≺β β and there is a

C ∈ N ∪ U such that L ∈ C.
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3.16.9 Lemma (Soundness of the initial state)
The initial state (ε; N; ∅;β; 0;>) is sound.

Proof.
Criteria 1–3 and 6 are trivially satisfied by Γ = ε. Furthermore,
N |= ∅, fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for
D = >.

3.16.10 Theorem (Soundness of SCL)
All SCL rules preserve soundness, i.e. they map a sound state
onto a sound state.
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Corollary (Sondness of SCL)
The rules of SCL are sound, hence SCL starting with an initial
state is sound.

Proof.
Follows by induction over the size of the run. The base case is
handled by Lemma 3.16.9, the induction step is contained in
Theorem 3.16.10.
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3.16.12 Definition (Reasonable Runs)
A sequence of SCL rule applications is called a reasonable run if
the rule Decide does not enable an immediate application of rule
Conflict.

3.16.13 Definition (Regular Runs)
A sequence of SCL rule applications is called a regular run if it is
a reasonable run and the rule Conflict has precedence over all
other rules.
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3.16.14 Theorem (Correct Termination)
If in a regular run no rules are applicable to a state
(Γ; N; U;β; k ; D) then either D = ⊥ and N is unsatisfiable or
D = > and grd(N)≺ββ is satisfiable and Γ |= grd(N)≺ββ.
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3.16.15 Lemma (Resolve in regular runs)
Consider the derivation of a conflict state
(Γ,L; N; U;β; k ;>)⇒Conflict (Γ,L; N; U;β; k ; D). In a regular run,
during conflict resolution L is not a decision literal and at least the
literal L is resolved.
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3.16.16 Definition (State Induced Ordering)
Let (L1,L2, . . . ,Ln; N; U;β; k ; D) be a sound state of SCL. The
trail induces a total well-founded strict order on the defined
literals by

L1 ≺Γ comp(L1) ≺Γ L2 ≺Γ comp(L2) ≺Γ · · · ≺Γ Ln ≺Γ comp(Ln).
We extend ≺Γ to a strict total order on all literals where all
undefined literals are larger than comp(Ln). We also extend ≺Γ to
a strict total order on ground clauses by multiset extension and
also on multisets of ground clauses and overload ≺Γ for all these
cases. With �Γ we denote the reflexive closure of ≺Γ.
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3.16.17 Theorem (Learned Clauses in Regular Runs)
Let (Γ; N; U;β; k ; C0 · σ0) be the state resulting from the
application of Conflict in a regular run and let C be the clause
learned at the end of the conflict resolution, then C is not
redundant with respect to N ∪ U and ≺Γ.
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During a run, the ordering of literals changes
Hence, ≺Γ changes as well!
Non-redundancy property of Theorem 3.16.17 reflects state at
time of creation of learned clause
At time of creation, no need to check for redundancy
Still, all ≺Γ contain the fixed clause subset ordering ≺⊆
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3.16.19 Theorem (Termination)
Any regular run of⇒SCL terminates.

Lemma (Termination without Backtrack)
Any regular run of⇒SCL that does not use the Backtrack rule
terminates.

M(Γ,N; U;β; k ;>) = (1, |{P | P ≺B β}| − |Γ|, 0 )

M(Γ,N; U;β; k ; C) = (0, #possible resolutions, |C| )
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Lemma (Termination with Backtrack)
Any regular run of⇒SCL cannot use the Backtrack rule infinitely
often.

Proof.
Firstly, for a regular run, by Theorem 3.16.17, all learned clauses
are non-redundant under ≺Γ. Those clauses are also
non-redundant under the fixed subset ordering ≺⊆, which is
well-founded. Due to the restriction of all clauses to be smaller
than {β}, the overall number of non-redundant ground clauses is
finite. So Backtrack can only be invoked finitely many times.
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3.16.20 Theorem (SCL Refutational Completeness)
If N is unsatisfiable, such that some finite N ′ ⊆ grd(N) is
unsatisfiable and β is ≺β larger than all literals in N ′ then any
regular run from (ε; N; ∅;β; 0;>) of SCL derives ⊥.

Proof.
By Theorem 3.16.19 and Theorem 3.16.14.
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3.16.18 Theorem (BS Non-Redundancy is
NEXPTIME-Complete)
Deciding non-redundancy of a BS clause C with respect to a
finite BS clause set N�C is NEXPTIME-Complete.
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Obviously, given some unsatisfiable clause set N there is no way
to efiiciently compute some β such that ground(N)≺β is
unsatisfiable. Therefore, in an implementation, the below rule
Grow is needed to eventually provide a semi-decision procedure.

Grow (Γ; N; U;β; k ;>) ⇒SCL (ε; N; U;β′; 0;>)

provided Γ |= grd(N)≺β and β ≺β β′
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3.16.21 Theorem (SCL decides the BS fragment)
SCL restricted to regular runs decides satisfiability of a BS clause
set if β is set appropriately.

Proof.
Let B be the set of constants in the BS clause set N. Then define
≺β and β such that L ≺β β for all L ∈ grd≺ββ(N). Following the
proof of Theorem 3.16.19, any SCL regular run will terminate on
a BS clause set.
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The End (of SCL)
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