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Unification

3.7.1 Definition (Unifier)
Two terms s and t of the same sort are said to be unifiable if
there exists a well-sorted substitution σ so that sσ = tσ, the
substitution σ is then called a well-sorted unifier of s and t .

The unifier σ is called most general unifier, written σ = mgu(s, t),
if any other well-sorted unifier τ of s and t it can be represented
as τ = στ ′, for some well-sorted substitution τ ′.
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A state of the naive standard unification calculus is a set of
equations E or ⊥, where ⊥ denotes that no unifier exists. The set
E is also called a unification problem.

The start state for checking whether two terms s, t ,
sort(s) = sort(t), (or two non-equational atoms A, B) are unifiable
is the set E = {s = t} (E = {A = B}). A variable x is solved in E
if E = {x = t} ] E ′, x 6∈ vars(t) and x 6∈ vars(E).

A variable x ∈ vars(E) is called solved in E if E = E ′ ] {x = t}
and x 6∈ vars(t) and x 6∈ vars(E ′).
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Standard (naive) Unification

Tautology E ] {t = t} ⇒SU E

Decomposition E ] {f (s1, . . . , sn) = f (t1, . . . , tn)} ⇒SU
E ∪ {s1 = t1, . . . , sn = tn}

Clash E ] {f (s1, . . . , sn) = g(s1, . . . , sm)} ⇒SU ⊥
if f 6= g
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Substitution E ] {x = t} ⇒SU E{x 7→ t} ∪ {x = t}
if x ∈ vars(E) and x 6∈ vars(t)

Occurs Check E ] {x = t} ⇒SU ⊥
if x 6= t and x ∈ vars(t)

Orient E ] {t = x} ⇒SU E ∪ {x = t}
if t 6∈ X
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3.7.2 Theorem (Soundness, Completeness and
Termination of⇒SU)
If s, t are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗SU E then any equation (s′ = t ′) ∈ E is
well-sorted, i.e., sort(s′) = sort(t ′).

2. ⇒SU terminates on {s = t}.
3. if {s = t} ⇒∗SU E then σ is a unifier (mgu) of E iff σ

is a unifier (mgu) of {s = t}.
4. if {s = t} ⇒∗SU ⊥ then s and t are not unifiable.
5. if {s = t} ⇒∗SU {x1 = t1, . . . , xn = tn} and this is a

normal form, then {x1 7→ t1, . . . , xn 7→ tn} is an mgu
of s, t .
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Size of Unification Problems

Any normal form of the unification problem E given by

{f (x1,g(x1, x1), x3, . . . ,g(xn, xn)) = f (g(x0, x0), x2,g(x2, x2), . . . , xn+1)}

with respect to⇒SU is exponentially larger than E .
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Polynomial Unification

The second calculus, polynomial unification, prevents the
problem of exponential growth by introducing an implicit
representation for the mgu.

For this calculus the size of a normal form is always polynomial in
the size of the input unification problem.
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Tautology E ] {t = t} ⇒PU E

Decomposition E ] {f (s1, . . . , sn) = f (t1, . . . , tn)} ⇒PU
E ] {s1 = t1, . . . , sn = tn}

Clash E ] {f (t1, . . . , tn) = g(s1, . . . , sm)} ⇒PU ⊥
if f 6= g
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Occurs Check E ] {x = t} ⇒PU ⊥
if x 6= t and x ∈ vars(t)

Orient E ] {t = x} ⇒PU E ] {x = t}
if t 6∈ X

Substitution E ] {x = y} ⇒PU E{x 7→ y} ] {x = y}
if x ∈ vars(E) and x 6= y
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Cycle E ] {x1 = t1, . . . , xn = tn} ⇒PU ⊥
if there are positions pi with ti |pi = xi+1, tn|pn = x1 and some
pi 6= ε

Merge E ] {x = t , x = s} ⇒PU E ] {x = t , t = s}
if t , s 6∈ X and |t | ≤ |s|
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3.7.4 Theorem (Soundness, Completeness and
Termination of⇒PU)
If s, t are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗PU E then any equation (s′ = t ′) ∈ E is
well-sorted, i.e., sort(s′) = sort(t ′).

2. ⇒PU terminates on {s = t}.
3. if {s = t} ⇒∗PU E then σ is a unifier (mgu) of E iff σ

is a unifier (mgu) of {s = t}.
4. if {s = t} ⇒∗PU ⊥ then s and t are not unifiable.
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3.7.5 Theorem (Normal Forms Generated by⇒PU)
Let {s = t} ⇒∗PU {x1 = t1, . . . , xn = tn} be a normal form. Then

1. xi 6= xj for all i 6= j and without loss of generality
xi /∈ vars(ti+k ) for all i , k , 1 ≤ i < n, i + k ≤ n.

2. the substitution {x1 7→ t1}{x2 7→ t2} . . . {xn 7→ tn} is
an mgu of s = t .
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First-Order Superposition

Now the result for ground superposition are lifted to superposition
on first-order clauses with variables, still without equality.

The completeness proof of ground superposition above talks
about (strictly) maximal literals of ground clauses. The
non-ground calculus considers those literals that correspond to
(strictly) maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1
where clauses with variables are projected to their ground
instances for ordering computations.
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3.13.1 Definition (Maximal Literal)
A literal L is called maximal in a clause C if and only if there
exists a grounding substitution σ so that Lσ is maximal in Cσ, i.e.,
there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called
strictly maximal if there is no different L′ ∈ C such that Lσ � L′σ.

Note that the orderings KBO and LPO cannot be total on atoms
with variables, because they are stable under substitutions.
Therefore, maximality can also be defined on the basis of
absence of greater literals. A literal L is called maximal in a
clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.
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Superposition Left
(N ] {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P(t1, . . . , tn)σ is strictly maximal in (C1 ∨ P(t1, . . . , tn))σ
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected (iii) ¬P(s1, . . . , sn)σ is
maximal and no literal selected in (C2 ∨ ¬P(s1, . . . , sn))σ, or
¬P(s1, . . . , sn) is selected in (C2 ∨ ¬P(s1, . . . , sn))σ (iv) σ is the
mgu of P(t1, . . . , tn) and P(s1, . . . , sn)

Factoring
(N ] {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)} ∪ {(C ∨ P(t1, . . . , tn))σ})
where (i) P(t1, . . . , tn)σ is maximal in
(C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn))σ (ii) no literal is selected in
C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn) (iii) σ is the mgu of P(t1, . . . , tn)
and P(s1, . . . , sn)
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Note that the above inference rules Superposition Left and
Factoring are generalizations of their respective counterparts
from the ground superposition calculus above. Therefore, on
ground clauses they coincide. Therefore, we can safely overload
them in the sequel.

3.13.3 Definition (Abstract Redundancy)
A clause C is redundant with respect to a clause set N if for all
ground instances Cσ there are clauses {C1, . . . ,Cn} ⊆ N with
ground instances C1τ1, . . . ,Cnτn such that Ciτi ≺ Cσ for all i and
C1τ1, . . . ,Cnτn |= Cσ.
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3.13.4 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.

In contrast to the ground case, the above abstract notion of
redundancy is not effective, i.e., it is undecidable for some clause
C whether it is redundant, in general. Nevertheless, the concrete
ground redundancy notions carry over to the non-ground case.
Note also that a clause C is contained in N modulo renaming of
variables.

October 29, 2024 217/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Subsumption (N ] {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Deletion (N ] {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)
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Let rdup be a function from clauses to clauses that removes
duplicate literals, i.e., rdup(C) = C′ where C′ ⊆ C, C′ does not
contain any duplicate literals, and for each L ∈ C also L ∈ C′.

Condensation (N ] {C1 ∨ L ∨ L′}) ⇒SUP
(N ∪ {rdup((C1 ∨ L ∨ L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′

for some σ

Subsumption Resolution (N ] {C1 ∨ L,C2 ∨ L′}) ⇒SUP
(N ∪ {C1 ∨ L,C2})
where Lσ = ¬L′ and C1σ ⊆ C2 for some σ
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3.13.7 Lemma (Lifting)
Let D ∨ L and C ∨ L′ be variable-disjoint clauses and σ a
grounding substitution for C ∨ L and D ∨ L′. If there is a
superposition left inference
(N ] {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP
(N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ}) and if
sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that
(N ] {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

Let C ∨ L ∨ L′ be a clause and σ a grounding substitution for
C ∨ L ∨ L′. If there is a factoring inference
(N ] {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})
and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a
mgu τ such that
(N ] {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})
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3.13.8 Example (First-Order Reductions are not Liftable)
Consider the two clauses P(x) ∨Q(x), P(g(y)) and grounding
substitution {x 7→ g(a), y 7→ a}. Then P(g(y))σ subsumes
(P(x) ∨Q(x))σ but P(g(y)) does not subsume P(x) ∨Q(x). For
all other reduction rules similar examples can be constructed.
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3.13.9 Lemma (Soundness and Completeness)
First-Order Superposition is sound and complete.

3.13.10 Lemma (Redundant Clauses are Obsolete)
If a clause set N is unsatisfiable, then there is a derivation
N ⇒∗SUP N ′ such that ⊥ ∈ N ′ and no clause in the derivation of ⊥
is redundant.

3.13.11 Lemma (Model Property)
If N is a saturated clause set and ⊥ 6∈ N then grd(Σ,N)I |= N.
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Algorithm 1: SupProver(N)
Input : A set of clauses N.
Output : A saturated set of clauses N′, equivalent to N.

1 WO := ∅;
2 US := N;
3 while (US 6= ∅ and ⊥ 6∈ US) do
4 Given:= pick a clause from US;
5 WO := WO ∪ {Given};
6 New := SupLeft(WO,Given) ∪ Fact(Given);
7 while (New 6= ∅) do
8 Given:= pick a clause from New;
9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO ∪US)) then
11 Given:= Cond(Given);
12 Given:= SubRes(Given,WO);
13 WO:= SubDel(WO,Given);
14 US:= SubDel(US,Given);
15 New:= New ∪ SubRes(WO ∪US,Given);
16 US:= US ∪ {Given };

17 end
18 end
19 return WO;
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