Preliminaries Propositional Logic First-Order Logic

Conflict Driven Clause Learning (CDCL)

The CDCL calculus tests satisfiability of a finite set *N* of propositional clauses.

I assume that $\perp \notin N$ and that the clauses in N do not contain duplicate literal occurrences. Furthermore, duplicate literal occurrences are always silently removed during rule applications of the calculus. (Exhaustive Condensation.)

The CDCL calculus explicitely builds a candidate model for a clause set. If such a sequence of literals L_1, \ldots, L_n satisfies the clause set N, it is done. If not, there is a false clause $C \in N$ with respect to L_1, \ldots, L_n .

Now instead of just backtracking through the literals L_1, \ldots, L_n , CDCL generates in addition a new clause, called *learned clause* via resolution, that actually guarantees that the subsequence of L_1, \ldots, L_n that caused *C* to be false will not be generated anymore.

This causes CDCL to be exponentially more powerful in proof length than its predecessor DPLL or Tableau.

CDCL State

A CDCL problem state is a five-tuple (M; N; U; k; D) where

M a sequence of annotated literals, called a *trail*,

N and U are sets of clauses,

 $k \in \mathbb{N}$, and

D is a non-empty clause or \top or \bot , called the *mode* of the state.

The set N is initialized by the problem clauses where the set U contains all newly learned clauses that are consequences of clauses from N derived by resolution.

Preliminaries Propositional Logic First-Order Logic

Modes of CDCL States

$(\epsilon; \textit{N}; \emptyset; 0; \top) \ (\textit{M}; \textit{N}; \textit{U}; \textit{k}; \top)$	is the start state for some clause set N is a final state, if $M \models N$ and all literals from N
	are defined in M
(<i>M</i> ; <i>N</i> ; <i>U</i> ; <i>k</i> ; ⊥)	is a final state, where <i>N</i> has no model
(<i>M</i> ; <i>N</i> ; <i>U</i> ; <i>k</i> ; ⊤)	is an intermediate model search state if $M \not\models N$
(M; N; U; k; D)	is a backtracking state if $D \notin \{\top, \bot\}$

The Role of Levels

Literals in $L \in M$ are either annotated with a number, a level, i.e., they have the form L^k meaning that L is the k^{th} guessed decision literal, or they are annotated with a clause that forced the literal to become true.

A literal *L* is of *level k* with respect to a problem state (M; N; U; j; C) if *L* or comp(*L*) occurs in *M* and *L* itself or the first decision literal left from *L* (comp(*L*)) in *M* is annotated with *k*. If there is no such decision literal then k = 0.

A clause *D* is of *level k* with respect to a problem state (M; N; U; j; C) if *k* is the maximal level of a literal in *D*.

CDCL Rules

Propagate $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{C \lor L}; N; U; k; \top)$ provided $C \lor L \in (N \cup U), M \models \neg C$, and *L* is undefined in *M*

Decide $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{k+1}; N; U; k+1; \top)$ provided *L* is undefined in *M*

Conflict $(M; N; U; k; \top) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \in (N \cup U)$ and $M \models \neg D$

Skip
$$(ML^{C \lor L}; N; U; k; D) \Rightarrow_{CDCL} (M; N; U; k; D)$$

provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

Resolve $(ML^{C \lor L}; N; U; k; D \lor comp(L)) \Rightarrow_{CDCL} (M; N; U; k; D \lor C)$ provided *D* is of level *k*

Backtrack $(M_1 K^{i+1} M_2; N; U; k; D \lor L) \Rightarrow_{CDCL} (M_1 L^{D \lor L}; N; U \cup \{D \lor L\}; i; \top)$

provided L is of level k and D is of level i.

Restart $(M; N; U; k; \top) \Rightarrow_{CDCL} (\epsilon; N; U; 0; \top)$ provided $M \not\models N$

Forget $(M; N; U \uplus \{C\}; k; \top) \Rightarrow_{CDCL} (M; N; U; k; \top)$ provided $M \not\models N$

2.9.5 Definition (Reasonable CDCL Strategy)

A CDCL strategy is *reasonable* if the rules Conflict and Propagate are always preferred over all other rules.

2.9.6 Proposition (CDCL Basic Properties)

Consider CDCL run deriving (M; N; U; k; C) by any strategy but without Restart and Forget. Then the following properties hold:

- 1. *M* is consistent.
- 2. All learned clauses are entailed by *N*.
- 3. If $C \notin \{\top, \bot\}$ then $M \models \neg C$.
- 4. If $C = \top$ and M contains only propagated literals then for each valuation A with $A \models N$ it holds that $A \models M$.
- 5. If $C = \top$, *M* contains only propagated literals and $M \models \neg D$ for some $D \in (N \cup U)$ then *N* is unsatisfiable.
- 6. If $C = \bot$ then CDCL terminates and N is unsatisfiable.
- 7. *k* is the maximal level of a literal in *M*.
- 8. Each infinite derivation contains an infinite number of Backtrack applications.

2.9.7 Lemma (CDCL Redundancy)

Consider a CDCL derivation by a reasonable strategy. Then CDCL never learns a clause contained in $N \cup U$.

2.9.10 Lemma (CDCL Soundness)

In a reasonable CDCL derivation, CDCL can only terminate in two different types of final states: $(M; N; U; k; \top)$ where $M \models N$ and $(M; N; U; k; \bot)$ where N is unsatisfiable.

2.9.11 Proposition (CDCL Soundness)

The rules of the CDCL algorithm are sound: (i) if CDCL terminates from (ϵ ; N; \emptyset ; 0; \top) in the state (M; N; U; k; \top), then N is satisfiable, (ii) if CDCL terminates from (ϵ ; N; \emptyset ; 0; \top) in the state (M; N; U; k; \bot), then N is unsatisfiable.

2.9.12 Proposition (CDCL Strong Completeness)

The CDCL rule set is complete: for any valuation M with $M \models N$ there is a reasonable sequence of rule applications generating $(M'; N; U; k; \top)$ as a final state, where M and M' only differ in the order of literals.

2.9.13 Proposition (CDCL Termination)

Assume the algorithm CDCL with all rules except Restart and Forget is applied using a reasonable strategy. Then it terminates in a state (M; N; U; k; D) with $D \in \{\top, \bot\}$.

Preliminaries Propositional Logic First-Order Logic

The Overall Picture

Application

System + Problem

System

Algorithm + Implementation

Algorithm

Calculus + Strategy

Calculus

 ${\sf Logic} + {\sf States} + {\sf Rules}$

Logic

Syntax + Semantics

Preliminaries Propositional Logic First-Order Logic

```
1 Algorithm: 5 CDCL(S)
  Input : An initial state (\epsilon; N; \emptyset; 0; \top).
  Output A final state S = (M; N; U; k; T) or
            S = (M; N; U; k; \perp)
2 while (any rule applicable) do
      ifrule (Conflict(S)) then
3
          while (Skip(S) \parallel Resolve(S)) do
4
              update VSIDS on resolved literals;
 5
          update VSIDS on learned clause, Backtrack(S);
6
7
          if (forget heuristic) then
              Forget(S), Restart(S);
8
          else
 9
              if (restart heuristic) then
10
                  Restart(S);
11
      else
10
          Fropagate(S)) then
                                                   October 17, 2024
```

62/588

Implementation: Data Structures

Propagate $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{C \lor L}; N; U; k; \top)$ provided $C \lor L \in (N \cup U), M \models \neg C$, and *L* is undefined in *M*

Conflict $(M; N; U; k; \top) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \in (N \cup U)$ and $M \models \neg D$

data structures: clauses, trail, and the rules

- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

Preliminaries Propositional Logic First-Order Logic

Data Structures

Idea: Select two literals from each clause for indexing.

Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)

If one of the watched literals is false and the other watched literal is not true, then all other literals of the clause are false.

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially *b* > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (*phase saving*)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

fix a limit d on the number of learned clauses

- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1

do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- *d* := *d* + *e* for some *e*, *e* >> 1
- do a Restart

after forgetting do a restart

- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1),$ $(u_{n+1}, v_{n+1}) := ((u_n \& - u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1),$ $(u_{n+1}, v_{n+1}) := ((u_n \& - u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1),$ $(u_{n+1}, v_{n+1}) := ((u_n \& - u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1),$ $(u_{n+1}, v_{n+1}) := ((u_n \& - u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

Memory Matters: SPASS-SATT

Forget-Start	800	108800
Restarts	412	369
Conflicts	153640	133403
Decisions	184034	159005
Propagations	17770298	15544812
Time	11	23
Memory	16	41

