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Complexity

There are several ways to compare the effectiveness of calculi.
One is by implementation and benchmarking. One is by
simulation, calculus A can simulate calculus Y , e.g., Resolution
can sumulate CDCL. Another one is by best case proof length. It
is shown that calculus X produces shorter proofs than calculus Y
on some class of formulas. This is the topic of this chapter.
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2.14.1 Definition (Exponential Proof Length for Analytic
Calculi)
Let EPL1 = {P1,¬P1}. Then EPLi+1 is inductively defined by
EPLi+1 = {P2i +j ∨ Cj ,¬P2i +j ∨ Cj | Cj ∈ EPLi}, where
EPLi = {C0, . . . ,C2i−1}.

Note that the number of clauses as well as the number of
propositional variables grows exponentially in i for the EPLi
clause sets: |EPLi | = 2i and |{Pi | Pi ∈ Cj ,Cj ∈ EPLi}| = 2i − 1.
For example, EPL2 = {P2 ∨ P1,¬P2 ∨ P1,P3 ∨ ¬P1,¬P3 ∨ ¬P1}.
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2.14.2 Theorem (EPL Proof Length [CookReckhow79])
The minimal proof length of Tableau and DPLL is exponential in
|EPLi |, whereas the minimal proof length of Resolution and
CDCL is linear in |EPLi |.
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2.14.3 Definition (Pigeon Hole Formulas ph(n))
For some given n and propositional variables Pi,j , where
1 ≤ j ≤ n, 1 ≤ i ≤ n + 1, the corresponding pigeon hole formula
(clause set) ph(n) is

ph(n) =
∧

1≤i≤n+1

Pi,1∨ . . .∨Pi,n ∧
∧

1≤j≤n

∧
1≤i,k≤n+1

i<k

¬Pi,j ∨¬Pk ,j

The intuition behind a variable Pi,j is that it is true iff pigeon i sits
in hole j . Then the formulas Pi,1 ∨ . . . ∨ Pi,n express that every
pigeon has to sit in some hole and the formulas ¬Pi,j ∨ ¬Pk ,j that
a hole can host at most one pigeon. Since there is one more
pigeon than holes, the formula is unsatisfiable.
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Note that the number of clauses of a pigeon hole formula ph(n)
grows cubic in n. The famous theorem on the pigeon whole
formulas says that any resolution proof showing unsatisfiability of
ph(n) has a length at least exponential in n, i.e., no
resolution-based system can efficiently show unsatisfiability of a
pigeon hole formula.

2.14.4 Theorem (Pigeon Hole Proof Length [Haken85])
The length of any resolution refutation of ph(n) is exponential in n.
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Computing Cost Optimal Models
(OCDCL)
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OCDCL States

(ε; N; ∅; 0;>; ε) start state for some clause set N
(M; N; U; k ;⊥; O) final state, where

N has no model if O = ε

O is a cost optimal model if O 6= ε

(M; N; U; k ;>; O) intermediate model search state
(M; N; U; k ; D; O) backtracking state if D 6∈ {>,⊥}

O denotes the cost optimal model of N
M, N, U, k , D are defined analogously to CDCL
but OCDCL always terminates with D = ⊥
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OCDCL Rules

Propagate (M; N; U; k ;>; O) ⇒OCDCL (MLC∨L; N; U; k ;>; O)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, L is undefined in M

Decide (M; N; U; k ;>; O) ⇒OCDCL
(MLk+1; N; U; k + 1;>; O)

provided L is undefined in M, contained in N

ConflSat (M; N; U; k ;>; O) ⇒OCDCL (M; N; U; k ; D; O)

provided D ∈ (N ∪ U) and M |= ¬D

ConflOpt (M; N; U; k ;>; O) ⇒OCDCL (M; N; U; k ;¬M; O)

provided O 6= ε and cost(M) ≥ cost(O)
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OCDCL Rules (ctd.)
Skip (MLC∨L; N; U; k ; D; O) ⇒OCDCL (M; N; U; k ; D; O)

provided D 6∈ {>,⊥} and comp(L) does not occur in D

Resolve (MLC∨L; N; U; k ; D ∨ comp(L); O) ⇒OCDCL
(M; N; U; k ; D ∨ C; O)

provided D is of level k

Backtrack (M1K i+1M2; N; U; k ; D ∨ L; O) ⇒OCDCL
(M1LD∨L; N; U ∪ {D ∨ L}; i ;>; O)

provided L is of level k and D is of level i

Improve (M; N; U; k ;>; O) ⇒OCDCL (M; N; U; k ;>; M)

provided M |= N, M is total, i.e., contains all atoms in N, and
O = ε or cost(M) < cost(O)
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?? Definition (Reasonable OCDCL Strategy)
An OCDCL strategy is reasonable if ConflSat is preferred over
ConflOpt is preferred over Improve is preferred over Propagate
which is preferred over the remaining rules.
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2.15.3 Proposition (OCDCL Basic Properties)
Consider an OCDCL state (M; N; U; k ; D′; O) derived by a
reasonable strategy from start state (ε,N, ∅,0,>, ε). Then the
following properties hold:

1. M is consistent.
2. If O 6= ε then O is consistent and O |= N.

3. If D′ 6∈ {>,⊥} then M |= ¬D′.

4. If D′ 6∈ {>,⊥} then (i) D′ is entailed by N ∪ U, or (ii) for any
model M ′ |= {¬D′} ∪ N ∪ U: cost(M ′) ≥ cost(O).

5. If D′ = > and M contains only propagated literals then for each
valuation A with A |= (N ∪ U) it holds A |= M.
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2.15.3 Proposition (OCDCL Basic Properties (ctd.))

6. For all models M with M |= N: if O = ε or cost(M) < cost(O)
then M |= (N ∪ U).

7. If D′ = ⊥ then OCDCL terminates and there is no model M ′

with M ′ |= N and cost(M ′) < cost(O).

8. Each infinite derivation

(ε; N; ∅; 0;>; ε)⇒OCDCL (M1; N; U1; k1; D1; O1)⇒OCDCL . . .

contains an infinite number of Backtrack applications.

9. OCDCL never learns the same clause twice.
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2.15.4 Lemma (OCDCL Normal Forms)
The OCDCL calculus with a reasonable strategy has only 2
normal forms:

(M; N; U; 0;⊥; O) where O 6= ε, O |= N and cost(O) is optimal
(M; N; U; 0;⊥; ε) where N is unsatisfiable
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2.15.5 Lemma (OCDCL Termination)
OCDCL with a reasonable strategy terminates in a state
(M; N; U; 0;⊥; O).

2.15.6 Theorem (OCDCL Correctness)
OCDCL with a reasonable strategy starting from a state
(ε; N; ∅; 0;>; ε) terminates in a state (M; N; U; 0;⊥; O). If O = ε
then N is unsatisfiable. If O 6= ε then O |= N and for any other
model M ′ with M ′ |= N it holds cost(M ′) ≥ cost(O).
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Improving OCDCL

Prune (M; N; U; k ;>; O) ⇒OCDCL (M; N; U; k ;¬M; O)

provided for all total trail extensions MM ′ of M it holds
cost(MM ′) ≥ cost(O)

ConflOpt (M; N; U; k ;>; O) ⇒OCDCL (M; N; U; k ;¬M; O)

provided O 6= ε and cost(M) ≥ cost(O)
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The Max-SAT Problem

Given N = NH ] NS where NH are hard clauses
and NS are soft clauses

Find A |= NH with minimal cost
∑C∈NS
A|=¬C ω(C)

where ω : NS 7→ R+
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Reducing Max-SAT to OCDCL

1. Introduce a fresh variable Si for each Ci ∈ NS = {C1, . . . ,Cn}
2. Define N ′S = {Si ∨ Ci | Ci ∈ NS}
3. Compute cost optimal model for N ′ = NH ] N ′S with

cost function cost(L) =

{
ω(Ci) if L = Si
0 otherwise
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2.15.7 Theorem (Max-SAT Solution)
A is a Max-SAT solution for N = NH ] NS with minimal value
c =

∑C∈NS
A|=¬C ω(C) iff (ε; N ′; ∅; 0;>; ε)⇒∗OCDCL (M; N ′; U; k ;⊥; O)

with a reasonable strategy where N ′ = NH ]N ′S, and cost(O) = c.

January 28, 2025 114/600



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Optimization

1. Introduce a fresh variable Si for each Ci ∈ NS = {C1, . . . ,Cn}
2. Define N ′S = {Si ∨ Ci | Ci ∈ NS}∪{¬Ci ∨ ¬Si | Ci ∈ NS}
3. Compute cost optimal model for N ′ = NH ] N ′S with

cost function cost(L) =

{
ω(Ci) if L = Si
0 otherwise
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Minimal Covering Models

GivenM set of all models of the set of clauses N

FindM′ ⊆M such that
|M′| is minimal
for each propositional variable P in N there
is a model M ∈M′ with M(P) = 1

January 28, 2025 116/600



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Reduction to OCDCL

Given N with variables P1, . . .Pn and clauses C1, . . . ,Cm

1. Define Nj := {C{Pi 7→ P j
i | 1 ≤ i ≤ n} ∨ ¬Qj | C ∈ N}

2. Define N+ := {P1
i ∨ . . . ∨ Pn

i | 1 ≤ i ≤ n}
3. Define NQ := {¬P j

i ∨Qj | 1 ≤ i , j ≤ n}
4. Find a minimal cost model of (∪n

j=1Nj) ∪ N+ ∪ NQ with cost
function cost(M) =

∑n
j=1 M(Qj)

Requires
O(n2) additional variables
O(n ·max(m,n)) additional clauses

Note: n = upper bound of number of models (Algorithm 10)
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