Complexity

There are several ways to compare the effectiveness of calculi. One is by implementation and benchmarking. One is by simulation, calculus A can simulate calculus Y, e.g., Resolution can sumulate CDCL. Another one is by best case proof length. It is shown that calculus X produces shorter proofs than calculus Yon some class of formulas. This is the topic of this chapter.

2.14.1 Definition (Exponential Proof Length for Analytic Calculi)

Let $\text{EPL}_1 = \{P_1, \neg P_1\}$. Then EPL_{i+1} is inductively defined by $\text{EPL}_{i+1} = \{P_{2^i+j} \lor C_j, \neg P_{2^i+j} \lor C_j \mid C_j \in \text{EPL}_i\}$, where $\text{EPL}_i = \{C_0, \dots, C_{2^i-1}\}$.

Note that the number of clauses as well as the number of propositional variables grows exponentially in *i* for the EPL_{*i*} clause sets: $|\text{EPL}_i| = 2^i$ and $|\{P_i \mid P_i \in C_j, C_j \in \text{EPL}_i\}| = 2^i - 1$. For example, $\text{EPL}_2 = \{P_2 \lor P_1, \neg P_2 \lor P_1, P_3 \lor \neg P_1, \neg P_3 \lor \neg P_1\}$.

2.14.2 Theorem (EPL Proof Length [CookReckhow79])

The minimal proof length of Tableau and DPLL is exponential in $|EPL_i|$, whereas the minimal proof length of Resolution and CDCL is linear in $|EPL_i|$.

2.14.3 Definition (Pigeon Hole Formulas ph(n))

For some given *n* and propositional variables $P_{i,j}$, where $1 \le j \le n, 1 \le i \le n+1$, the corresponding pigeon hole formula (clause set) ph(n) is

$$\mathsf{ph}(n) = \bigwedge_{1 \le i \le n+1} P_{i,1} \lor \ldots \lor P_{i,n} \land \bigwedge_{1 \le j \le n} \bigwedge_{\substack{1 \le j \le n \\ i \le k}} \neg P_{i,j} \lor \neg P_{k,j}$$

The intuition behind a variable $P_{i,j}$ is that it is true iff pigeon *i* sits in hole *j*. Then the formulas $P_{i,1} \vee \ldots \vee P_{i,n}$ express that every pigeon has to sit in some hole and the formulas $\neg P_{i,j} \vee \neg P_{k,j}$ that a hole can host at most one pigeon. Since there is one more pigeon than holes, the formula is unsatisfiable.

Note that the number of clauses of a pigeon hole formula ph(n) grows cubic in *n*. The famous theorem on the pigeon whole formulas says that any resolution proof showing unsatisfiability of ph(n) has a length at least exponential in *n*, i.e., no resolution-based system can efficiently show unsatisfiability of a pigeon hole formula.

2.14.4 Theorem (Pigeon Hole Proof Length [Haken85])

The length of any resolution refutation of ph(n) is exponential in *n*.

Computing Cost Optimal Models (OCDCL)

OCDCL States

 $(\epsilon; N; \emptyset; 0; \top; \epsilon)$ $(M; N; U; k; \bot; O)$

- start state for some clause set N final state, where
- *N* has no model if $O = \epsilon$
- *O* is a cost optimal model if $O \neq \epsilon$

(*M*; *N*; *U*; *k*; ⊤; *O*) (*M*; *N*; *U*; *k*; *D*; *O*) intermediate model search state backtracking state if $D \notin \{\top, \bot\}$

- O denotes the cost optimal model of N
- M, N, U, k, D are defined analogously to CDCL
- but OCDCL always terminates with $D = \bot$

OCDCL Rules

Propagate $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (ML^{C \lor L}; N; U; k; \top; O)$ provided $C \lor L \in (N \cup U), M \models \neg C, L$ is undefined in M

Decide $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (ML^{k+1}; N; U; k+1; \top; O)$

provided L is undefined in M, contained in N

ConflSat $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; D; O)$ provided $D \in (N \cup U)$ and $M \models \neg D$

ConflOpt $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and $cost(M) \ge cost(O)$

OCDCL Rules (ctd.)

Skip $(ML^{C \lor L}; N; U; k; D; O) \Rightarrow_{OCDCL} (M; N; U; k; D; O)$ provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

Resolve $(ML^{C \lor L}; N; U; k; D \lor comp(L); O) \Rightarrow_{OCDCL} (M; N; U; k; D \lor C; O)$ provided *D* is of level *k*

Backtrack $(M_1 K^{i+1} M_2; N; U; k; D \lor L; O) \Rightarrow_{OCDCL} (M_1 L^{D \lor L}; N; U \cup \{D \lor L\}; i; \top; O)$ provided *L* is of level *k* and *D* is of level *i*

Improve $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \top; M)$ provided $M \models N$, M is total, i.e., contains all atoms in N, and $O = \epsilon$ or cost(M) < cost(O)

?? Definition (Reasonable OCDCL Strategy)

An OCDCL strategy is *reasonable* if ConflSat is preferred over ConflOpt is preferred over Improve is preferred over Propagate which is preferred over the remaining rules.

2.15.3 Proposition (OCDCL Basic Properties)

Consider an OCDCL state (*M*; *N*; *U*; *k*; *D*'; *O*) derived by a reasonable strategy from start state (ϵ , *N*, \emptyset , 0, \top , ϵ). Then the following properties hold:

- 1. *M* is consistent.
- 2. If $O \neq \epsilon$ then O is consistent and $O \models N$.
- 3. If $D' \notin \{\top, \bot\}$ then $M \models \neg D'$.
- 4. If $D' \notin \{\top, \bot\}$ then (i) D' is entailed by $N \cup U$, or (ii) for any model $M' \models \{\neg D'\} \cup N \cup U$: $cost(M') \ge cost(O)$.
- 5. If $D' = \top$ and M contains only propagated literals then for each valuation \mathcal{A} with $\mathcal{A} \models (N \cup U)$ it holds $\mathcal{A} \models M$.

2.15.3 Proposition (OCDCL Basic Properties (ctd.))

- 6. For all models *M* with $M \models N$: if $O = \epsilon$ or cost(M) < cost(O) then $M \models (N \cup U)$.
- 7. If $D' = \bot$ then OCDCL terminates and there is no model M' with $M' \models N$ and cost(M') < cost(O).
- 8. Each infinite derivation

 $(\epsilon; N; \emptyset; 0; \top; \epsilon) \Rightarrow_{\mathsf{OCDCL}} (M_1; N; U_1; k_1; D_1; O_1) \Rightarrow_{\mathsf{OCDCL}} \dots$

contains an infinite number of Backtrack applications.

9. OCDCL never learns the same clause twice.

2.15.4 Lemma (OCDCL Normal Forms)

The OCDCL calculus with a reasonable strategy has only 2 normal forms:

- (*M*; *N*; *U*; 0; \perp ; *O*) where $O \neq \epsilon$, $O \models N$ and cost(O) is optimal
- $(M; N; U; 0; \bot; \epsilon)$ where N is unsatisfiable

2.15.5 Lemma (OCDCL Termination)

OCDCL with a reasonable strategy terminates in a state $(M; N; U; 0; \bot; O)$.

2.15.6 Theorem (OCDCL Correctness)

OCDCL with a reasonable strategy starting from a state $(\epsilon; N; \emptyset; 0; \top; \epsilon)$ terminates in a state $(M; N; U; 0; \bot; O)$. If $O = \epsilon$ then N is unsatisfiable. If $O \neq \epsilon$ then $O \models N$ and for any other model M' with $M' \models N$ it holds $cost(M') \ge cost(O)$.

Improving OCDCL

Prune $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \neg M; O)$ provided for all total trail extensions *MM'* of *M* it holds $cost(MM') \ge cost(O)$

ConflOpt $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and $cost(M) \ge cost(O)$

Improving OCDCL

Prune $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \neg M; O)$ provided for all total trail extensions *MM'* of *M* it holds $cost(MM') \ge cost(O)$

ConflOpt $(M; N; U; k; \top; O) \Rightarrow_{OCDCL} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and $cost(M) \ge cost(O)$

The Max-SAT Problem

Given
$$N = N_H \uplus N_S$$
 where N_H are hard clauses
and N_S are soft clauses

Find
$$\mathcal{A} \models N_H$$
 with minimal cost $\sum_{\mathcal{A} \models \neg C}^{C \in N_S} \omega(C)$
where $\omega \colon N_S \mapsto \mathbb{R}^+$

Reducing Max-SAT to OCDCL

- 1. Introduce a fresh variable S_i for each $C_i \in N_S = \{C_1, \ldots, C_n\}$
- 2. Define $N'_S = \{S_i \lor C_i \mid C_i \in N_S\}$
- 3. Compute cost optimal model for $N' = N_H \uplus N'_S$ with cost function $cost(L) = \begin{cases} \omega(C_i) & \text{if } L = S_i \\ 0 & \text{otherwise} \end{cases}$

2.15.7 Theorem (Max-SAT Solution)

 \mathcal{A} is a Max-SAT solution for $N = N_H \uplus N_S$ with minimal value $c = \sum_{\mathcal{A}\models\neg C}^{C\in N_S} \omega(C)$ iff $(\epsilon; N'; \emptyset; 0; \top; \epsilon) \Rightarrow_{OCDCL}^* (M; N'; U; k; \bot; O)$ with a reasonable strategy where $N' = N_H \uplus N'_S$, and cost(O) = c.

Optimization

- 1. Introduce a fresh variable S_i for each $C_i \in N_S = \{C_1, \dots, C_n\}$
- 2. Define $N'_S = \{S_i \lor C_i \mid C_i \in N_S\} \cup \{\neg C_i \lor \neg S_i \mid C_i \in N_S\}$
- 3. Compute cost optimal model for $N' = N_H \uplus N'_S$ with cost function $cost(L) = \begin{cases} \omega(C_i) & \text{if } L = S_i \\ 0 & \text{otherwise} \end{cases}$

Preliminaries Propositional Logic First-Order Logic

Minimal Covering Models

Given \mathcal{M} set of all models of the set of clauses N

Find $\mathcal{M}' \subseteq \mathcal{M}$ such that

- $|\mathcal{M}'|$ is minimal
- for each propositional variable *P* in *N* there is a model $M \in \mathcal{M}'$ with M(P) = 1

Reduction to OCDCL

Given N with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_i \mapsto P_i^j \mid 1 \le i \le n\} \lor \neg Q_j \mid C \in N\}$
- 2. Define $N_+ := \{P_i^1 \lor \ldots \lor P_i^n \mid 1 \le i \le n\}$
- 3. Define $N_Q := \{ \neg P_i^j \lor Q_j \mid 1 \le i, j \le n \}$
- 4. Find a minimal cost model of $(\bigcup_{j=1}^{n} N_j) \cup N_+ \cup N_Q$ with cost function $cost(M) = \sum_{j=1}^{n} M(Q_j)$

Requires

- O(n²) additional variables
- O(n · max(m, n)) additional clauses

Note: n = upper bound of number of models (Algorithm 10)

Reduction to OCDCL

Given N with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_i \mapsto P_i^j \mid 1 \le i \le n\} \lor \neg Q_j \mid C \in N\}$
- 2. Define $N_+ := \{P_i^1 \lor \ldots \lor P_i^n \mid 1 \le i \le n\}$
- 3. Define $N_Q := \{ \neg P_i^j \lor Q_j \mid 1 \le i, j \le n \}$
- 4. Find a minimal cost model of $(\bigcup_{j=1}^{n} N_j) \cup N_+ \cup N_Q$ with cost function $cost(M) = \sum_{j=1}^{n} M(Q_j)$

Requires

- O(n²) additional variables
- $O(n \cdot \max(m, n))$ additional clauses

Note: n = upper bound of number of models (Algorithm 10)

Reduction to OCDCL

Given N with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_i \mapsto P_i^j \mid 1 \le i \le n\} \lor \neg Q_j \mid C \in N\}$
- 2. Define $N_+ := \{P_i^1 \lor \ldots \lor P_i^n \mid 1 \le i \le n\}$
- 3. Define $N_Q := \{ \neg P_i^j \lor Q_j \mid 1 \le i, j \le n \}$
- 4. Find a minimal cost model of $(\bigcup_{j=1}^{n} N_j) \cup N_+ \cup N_Q$ with cost function $cost(M) = \sum_{j=1}^{n} M(Q_j)$

Requires

- O(n²) additional variables
- $O(n \cdot \max(m, n))$ additional clauses

Note: n = upper bound of number of models (Algorithm 10)

