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Branch and Bound for LIA

Idea: given a set of LIA inequations N, find a solution by
relaxation to LRA and case split with respect to an LRA solution
that is not in the integers.
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6.2.14 Lemma (LIA Satisfiability is NP-Complete)
Let N be a conjunction of linear arithmetic constraints then
LIA |= ∃x1, . . . , xn.N is NP-complete.

Proof.
NP-Membership: If N contains n variables and a is the absulte
value of the largest coefficients, then all variables can be bound
to −n(|N|a)2|N|+1 ≤ β(xi) ≤ n(|N|a)2|N|+1.

NP-Hardness: By coding 3-SAT.
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The simple LIA branch and bound calculus is very similar to
DPLL, Section 2.8. A LIABB problem state is a pair (M; N) where
M a sequence of partly annotated simple bounds xi ≤ d , d ∈ Z,
and N is a set of inequations, vars(N) = {x1, . . . , xn}. Let a be the
maximal absolute value of a coefficient in N, c = n(|N|a)2|N|+1,
then the following LIABB states can be distinguished:

(B; N) is the start state for N, where B = −c ≤
x1, x1 ≤ c, . . . ,−c ≤ xn, xn ≤ c.

(M; N) is a final state, if there is a unique β, LIA(β) |=
M ∧ N

(M; N) is a final state, if there is no β, LIA(β) |= N
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Given a state (M,N), a simple bound x ◦ d , d ∈ Z, is called
undefined in M, if there exists a valuation β, LIA(β) |= M and
LIA(β) 6|= x ◦ d . The rules Propagate, Decide, and Backtrack
constitute the LIABB calculus.
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Propagate (M; N) ⇒LIABB (M, x ◦ d ; N)

provided there is a valuation β, LRA(β) |= M ∧ N,
LIA |= ∀x1, . . . , xn.[(M ∧ N)→ x ◦ d ], d ∈ Z, and x ◦ d is
undefined in M

Decide (M; N) ⇒LIABB (M, x ◦ ed ; N)

provided x ◦ e is undefined in M, LRA(β) |= M ∧ N, β(x) = d and
either (◦ =≤ and e = bdc) or (◦ =≥ and e = dde)

Backtrack (M1, x ◦1 ed
1 ,M2; N) ⇒LIABB (M1, x ◦2 e2; N)

provided there is no valuation β,
LRA(β) |= (M1 ∧ x ◦1 e1 ∧M2 ∧ N) and there is no y ◦′ e′d ′ in M2
and if ◦1 =≤, then ◦2 =≥ and e2 = dde; if ◦1 =≥, then ◦2 =≤ and
e2 = bdc
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6.2.15 Lemma (LIABB Propagate and Decide)
Let (B,N)⇒∗LIABB (M,N) be a LIABB derivation. Then from
(M,N) there only finitely many applications of Propagate and
Decide possible.

6.2.16 Theorem (LIABB Terminates)
Any derivation (B,N)⇒∗LIABB . . . is finite.
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