Preliminaries Propositional Logic First-Order Logic

Branch and Bound for LIA

Idea: given a set of LIA inequations N, find a solution by relaxation to LRA and case split with respect to an LRA solution that is not in the integers.

6.2.14 Lemma (LIA Satisfiability is NP-Complete)

Let *N* be a conjunction of linear arithmetic constraints then LIA $\models \exists x_1, \ldots, x_n$. *N* is NP-complete.

Proof.

NP-Membership: If *N* contains *n* variables and *a* is the absulte value of the largest coefficients, then all variables can be bound to $-n(|N|a)^{2|N|+1} \le \beta(x_i) \le n(|N|a)^{2|N|+1}$.

NP-Hardness: By coding 3-SAT.

The simple LIA branch and bound calculus is very similar to DPLL, Section 2.8. A LIABB problem state is a pair (M; N) where M a sequence of partly annotated simple bounds $x_i \leq d$, $d \in \mathbb{Z}$, and N is a set of inequations, $vars(N) = \{x_1, \ldots, x_n\}$. Let a be the maximal absolute value of a coefficient in N, $c = n(|N|a)^{2|N|+1}$, then the following LIABB states can be distinguished:

- (B; N) is the start state for N, where $B = -c \le x_1, x_1 \le c, \ldots, -c \le x_n, x_n \le c$.
- (*M*; *N*) is a final state, if there is a unique β , LIA(β) \models *M* \wedge *N*
- (*M*; *N*) is a final state, if there is no β , LIA(β) \models *N*

Given a state (M, N), a simple bound $x \circ d$, $d \in \mathbb{Z}$, is called *undefined* in *M*, if there exists a valuation β , LIA $(\beta) \models M$ and LIA $(\beta) \not\models x \circ d$. The rules Propagate, Decide, and Backtrack constitute the LIABB calculus.

Propagate $(M; N) \Rightarrow_{\mathsf{LIABB}} (M, x \circ d; N)$ provided there is a valuation β , $\mathsf{LRA}(\beta) \models M \land N$, $\mathsf{LIA} \models \forall x_1, \dots, x_n.[(M \land N) \rightarrow x \circ d], d \in \mathbb{Z}$, and $x \circ d$ is undefined in M

Decide $(M; N) \Rightarrow_{\text{LIABB}} (M, x \circ e^d; N)$ provided $x \circ e$ is undefined in M, LRA $(\beta) \models M \land N$, $\beta(x) = d$ and either ($\circ = \le$ and $e = \lfloor d \rfloor$) or ($\circ = \ge$ and $e = \lceil d \rceil$)

Backtrack $(M_1, x \circ_1 e_1^d, M_2; N) \Rightarrow_{\text{LIABB}} (M_1, x \circ_2 e_2; N)$ provided there is no valuation β , $\text{LRA}(\beta) \models (M_1 \land x \circ_1 e_1 \land M_2 \land N)$ and there is no $y \circ' e'^{d'}$ in M_2 and if $\circ_1 = \leq$, then $\circ_2 = \geq$ and $e_2 = \lceil d \rceil$; if $\circ_1 = \geq$, then $\circ_2 = \leq$ and $e_2 = \lfloor d \rfloor$

6.2.15 Lemma (LIABB Propagate and Decide)

Let $(B, N) \Rightarrow^*_{\mathsf{LIABB}} (M, N)$ be a LIABB derivation. Then from (M, N) there only finitely many applications of Propagate and Decide possible.

6.2.16 Theorem (LIABB Terminates)

Any derivation $(B, N) \Rightarrow_{\text{LIABB}}^* \dots$ is finite.

