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Virtual Substitution

A more efficient way to eliminate quantifiers compared to FM,
Section 6.2.1, in linear rational arithmetic was developed by
R. Loos and V. Weispfenning (1993).

The method is also known as test point method or virtual
substitution method. In contrast to FM, the method does not
require CNF/DNF transformations of a prenex formula
{∃, ∀}x1 . . . {∃,∀}xn.φ.
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Let φ[x , ~y ] be a quantifier-free formula of linear arithmetic in
negation normal form containing the free variables x , ~y where all
negation symbols are removed. Any quantifier free formula φ can
be effectively and equivalently transformed in this form, see
Section 6.2.1 and for the removal of the operator ¬ rule ElimNeg.

The linear inequations in φ can be transformed such that x is
either isolated or does not occur in the inequation: x ◦i si(~y) and
0 ◦j s′j (~y) with ◦i , ◦j ∈ {≈, 6≈, <,≤, >,≥}, that is, φ us a formula
built from linear inequations, ∧ and ∨.
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The goal of the virtual substitution method is to identify a finite set
T of “test points”, i.e., LA terms such that

{∀,∃}~y .∃x .φ[x , ~y ] iff {∀,∃}~y .
∨
t∈T

φ[x , ~y ] {x 7→ t}.

Semantically, an existential quantifier represents an infinite
disjunction over Q. The goal of virtual substitution is to replace
this infinite disjunction by a finite disjunction.
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If the values of the variables ~y are determined by some arbitrary
but fixed assignment β for the ~y , then φ can be considered as a
function φβ : Q 7→ {0,1} by

φβ(d) := ALRA(β[x 7→ d ])(φ)

for any d ∈ Q. The value of each of the atoms x ◦i si [~y ] changes
only at ALRA(β)(si [~y ]), and the value of φ can only change if the
value of one of its atoms changes. So φβ is a piecewise constant
function.

More precisely, the set of all d ∈ Q with φβ(d) = 1 is a finite union
of intervals. The union may be empty, the individual intervals may
be finite or infinite and open or closed.
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Let

dist(φ, x , β) = min{ |ALRA(β)(si [~y ])−ALRA(β)(sj [~y ])|
where ALRA(β)(si [~y ]) 6= ALRA(β)(sj [~y ]) }

the minimal distance between two differently interpreted terms of
atoms x ◦i si [~y ], x ◦j sj [~y ] in φ under β. Then each of the intervals
has either length 0, i.e., it consists of one point, or its length is at
least dist(φ, x , β).
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The set of all values d ∈ Q of φβ(d) can be considered either by
traversing Q from −∞ to +∞ or the other way round. In the case
of traversing from −∞ to +∞ if the set of all d for which
φβ(d) = 1 is non-empty, then

(i) φβ(d) = 1 for all d ◦ ALRA(β)(r [~y ]) for some x ◦ r [~y ] occurring in
φ, ◦ ∈ {<,≤} or

(ii) there is some value d ∈ Q where the value of φβ(d) switches
from 0 to 1 when traversing from −∞ to +∞.
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This observation can be used to construct a set of test points
symbolically without considering β explicitly. It is sufficient to
keep in mind that the values for the ~y are fixed and to use then
the terms from φ as representatives for the values from Q.

The start is a “sufficiently small” test point r [~y ] to take care of
case (i). For case (ii), φ[x , ~y ] can only switch from 0 to 1 if one of
the atoms switches from 0 to 1. Recall that after the initial
transformations on φ, only positive boolean combinations of
atoms and ∧ and ∨ are left, which are monotonic with respect to
truth values.

November 26, 2024 420/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

Atoms of the form x ≤ si [~y ] and x < si [~y ] do not switch from 0 to
1 when x grows.

Atoms of the form x ≥ si [~y ] and x ≈ si [~y ] switch from 0 to 1 at
si [~y ] hence si [~y ] is a test point.

Atoms of the form x > si [~y ] and x 6≈ si [~y ] switch from 0 to 1 “right
after” si [~y ], hence si [~y ] + ε for some 0 < ε < δ(~y) is a test point.
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If r [~y ] is sufficiently small and 0 < ε < δ(~y), then

T := {r [~y ]} ∪ { si [~y ] | ◦i ∈ {≥,=} }
∪ { si [~y ] + ε | ◦i ∈ {>, 6=} }.

is a set of test points for atoms x◦isi [~y ].

However, it is not known how small r [~y ] has to be for case (i), and
δ(~y) for case (ii) is not known as well, because it is not effectively
possible to consider all, infinitely many β explicitly.

November 26, 2024 422/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

The idea out the problem is to extend the LA language by further
symbols∞, and ε with the obvious intended meanings. Now it is
straightforward to define T independently of β.

T := {−∞} ∪ { si [~y ] | ◦i ∈ {≥,=} }
∪ { si [~y ] + ε | ◦i ∈ {>, 6=} }.
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But the semantics of LA is not defined with respect to the
infinitesimals∞, ε and all considerations leading to the above set
T do not hold anymore, if φ contains occurrences of∞ or ε.

Fortunately, the infinitesimals∞ and ε vanish when substituted
for some variable x .
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(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = >
(x ≤ s(~y)) {x 7→ −∞} := lim

r→−∞
(r ≤ s(~y)) = >

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥
(x ≥ s(~y)) {x 7→ −∞} := lim

r→−∞
(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥
(x 6≈ s(~y)) {x 7→ −∞} := lim

r→−∞
(r 6≈ s(~y)) = >
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(x < s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≈ s(~y)) = ⊥
(x 6≈ s(~y)) {x 7→ u + ε} := lim

ε→0
(u + ε 6≈ s(~y)) = >
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The above test point set is constructed by considering a traversal
of possible values for x from −∞ to +∞. Alternatively, x can be
traversed from +∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si [~y ] | ◦i ∈ {≤,=} }
∪ { si [~y ]− ε | ◦i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.
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In practice, both sets T and T ′ and eventually the smaller formula
after substitution and simplification is considered. Similar to the
FM decision procedure for formulas, a universally quantified
formula ∀x .φ, is replaced by ¬∃x .¬φ. Then the inner negation is
pushed downwards, and then the test point procedure is applied
as in the case of an existential quantifier.
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Note that in contrast to the FM procedure, no CNF/DNF
transformation is required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas. So the CNF/DNF
conversion blow up caused in FM quantifier elimination does not
happen for virtual substitution. Therefore, the worst-case
complexity of Loos-Weispfenning quantifier elimination
significantly improves upon the worst-case complexity of FM.

However, the cost of computing a negation normal form remain.
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Virtual Substitution Complexity
The number of test points is at most half of the number of atoms
for some formula φ with |φ| = n, so the formula resulting from the
elimination of one variable, independent from the type of the
quantifier, is at most quadratic, therefore O(n2) runtime.
A sequence of m quantifiers of the same kind, results in a
multiplication of the formula size with n in each step, therefore
O(nm+1) runtime. This is the result of distributing existential
quantifiers over disjunctions.

∃x2 ∃x1. φ[x1, x2, ~y ]

↔ ∃x2.
(∨

t1∈T1
φ[x1, x2, ~y ] {x1 7→ t1}

)
↔

∨
t1∈T1

(
∃x2. φ[x1, x2, ~y ] {x1 7→ t1}

)
↔

∨
t1∈T1

∨
t2∈T2

(
φ[x1, x2, ~y ] {x1 7→ t1} {x2 7→ t2}

)
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A sequence of m quantifier alternations ∃∀∃∀ . . . ∃ turns the
top-level disjunction after moving the inner negation into a
top-level conjunction. An existential quantifier does not distribute
over a conjunction, so the procedure needs O(n2) runtime for
each step, therefore doubly exponential runtime in sum, O(n2m

).
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Simplex

The Simplex algorithm is the prime algorithm for solving
optimization problems of systems of linear inequations over the
rationals. For automated reasoning optimization at the level of
conjunctions of inequations is not in focus. Rather, solvability of a
set of linear inequations as a subproblem of some theory
combination is the typical application. In this context the simplex
algorithm is useful as well, due to its incremental nature. If an
inequation t ◦ c, ◦ ∈ {≤,≥, <,>}, t =

∑
aixi , ai , c ∈ Q, is added

to a set N of inequations where the simplex algorithm has
already found a solution for N, the algorithm needs not to start
from scratch. Instead it continues with the solution found for N. In
practice, it turns out that then typically only few steps are needed
to derive a solution for N ∪ {t ◦ d} if it exists.
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Firstly, the problem is rescritcted to non-strict inequations.
Starting point is a set N (conjunction) of (non-strict) inequations
of the form (

∑
xj∈X ai,jxj) ◦i ci where ◦i ∈ {≥,≤} for all i . Note that

an equation
∑

aixi = c can be encoded by two inequations
{
∑

aixi ≤ c,
∑

aixi ≥ c}.
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The variables occurring in N are assumed to be totally ordered
by some ordering ≺. The ordering ≺ will eventualy guarantee
termination of the simplex algorithm, see Definition 6.2.10 and
Theorem 6.2.11 below. I assume the xj to be all different, without
loss of generality xj ≺ xj+1, and I assume that all coefficients are
normalized by the gcd of the ai,j for all j : if the gcd is different
from 1 for one inequation, it is used for division of all coefficients
of the inequation.
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The goal is to decide whether there exists an assignment β from
the xj into Q such that

LRA(β) |=
∧

i

[(
∑
xj∈X

ai,jxj) ◦i ci ]

or equivalently, LRA(β) |= N. So the xj are free variables, i.e.,
placeholders for concrete values, i.e., existentially quantified.
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The first step is to transform the set N of inequations into two
disjoint sets E , B of equations and simple bounds, respectively.
The set E contains equations of the form yi ≈

∑
xj∈X ai,jxj , where

the yi are fresh and the set B contains the respective simple
bounds yi ◦i ci . In case the original inequation from N was already
a simple bound, i.e., of the form xj ◦j cj it is simply moved to B. If
in N left hand sides of ineqations (

∑
xj∈X ai,jxj) ◦i ci are shared, it

is sufficient to introduce one equation for the respective left hand
side. The yi are also part of the total ordering ≺ on all variables.
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The two representations are equivalent:

LRA(β) |= N

iff

LRA(β[yi 7→ β(
∑

xj∈X ai,jxj)]) |= E

and
LRA(β[yi 7→ β(

∑
xj∈X ai,jxj)]) |= B.
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Given E and B a variable z is called dependent if it occurs on the
left hand side of an equation in E , i.e., there is an equation
(z ≈

∑
xj∈X ai,jxj) ∈ E , and in case such a defining equation for z

does not exist in E the variable z is called independent. Note that
by construction the initial yi are all dependent and do not occur
on the right hand side of an equation.
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Given a dependant variable x , an independent variable y , and a
set of equations E , the pivot operation exchanges the roles of x ,
y in E where y occurs with non-zero coefficient in the defining
equation of x . Let (x ≈ ay + t) ∈ E be the defining equation of x
in E . When writing (x ≈ ay + t) for some equation, I always
assume that y 6∈ vars(t). Let E ′ be E without the defining
equation of x . Then

piv(E , x , y) := {y ≈ 1
a

x +
1
−a

t} ∪ E ′{y 7→ (
1
a

x +
1
−a

t)}
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Given an assignment β, an independent variable y , a rational
value c, and a set of equations E then the update of β with
respect to y , c, and E is

upd(β, y , c,E) := β[y 7→ c, {x 7→ β[y 7→ c](t) | x ≈ t ∈ E}]
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A Simplex problem state is a quintuple (E ; B;β; S; s) where E is
a set of equations; B a set of simple bounds; β an assignment to
all variables in E , B; S a set of derived bounds, and s the status
of the problem with s ∈ {>, IV,DV,⊥}. The state s = > indicates
that LRA(β) |= S; the state s = IV that potentially LRA(β) 6|= x ◦ c
for some independent variable x , x ◦ c ∈ S; the state s = DV that
LRA(β) |= x ◦ c for all independent variables x , x ◦ c ∈ S, but
potentially LRA(β) 6|= x ′ ◦ c′ for some dependent variable x ′,
x ′ ◦ c′ ∈ S; and the state s = ⊥ that the problem is unsatisfiable.
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The following states can be distinguished:

(E ; B;β0; ∅;>) is the start state for N and its transformation
into E , B, and assignment β0(x) := 0 for all
x ∈ vars(E ∪ B)

(E ; ∅;β; S;>) is a final state, where LRA(β) |= E ∪ S and
hence the problem is solvable

(E ; B;β; S;⊥) is a final state, where E ∪ B ∪ S has no model
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The important invariants of the simplex rules are:
(i) for every dependent variable there is exactly one equation in E

defining the variable and
(ii) dependent variables do not occur on the right hand side of an

equation,
(iii) LRA(β) |= E

These invariants are maintained by a pivot (piv) or an update
(upd) operation.
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EstablishBound (E ; B ] {x ◦ c};β; S;>) ⇒SIMP
(E ; B;β; S ∪ {x ◦ c}; IV)

AckBounds (E ; B;β; S; s) ⇒SIMP (E ; B;β; S;>)

if LRA(β) |= S, s ∈ {IV,DV}

FixIndepVar (E ; B;β; S; IV) ⇒SIMP
(E ; B; upd(β, x , c,E); S; IV)

if (x ◦ c) ∈ S, LRA(β) 6|= x ◦ c, x independent
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AckIndepBound (E ; B;β; S; IV) ⇒SIMP (E ; B;β; S; DV)

if LRA(β) |= x ◦ c, for all independent variables x with bounds
x ◦ c in S

FixDepVar≤(E ; B;β; S; DV) ⇒SIMP (E ′; B; upd(β, x , c,E ′); S; DV)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c, there is an
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or (a > 0 and β(y) > c′

for all (y ≥ c′) ∈ S) and E ′ := piv(E , x , y)

FixDepVar≥(E ; B;β; S; DV) ⇒SIMP (E ′; B; upd(β, x , c,E ′); S; DV)

if (x ≥ c) ∈ S, x dependent, LRA(β) 6|= x ≥ c, there is an
independent variable y and equation (x ≈ ay + t) ∈ E where
(a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or (a < 0 and β(y) > c′

for all (y ≥ c′) ∈ S) and E ′ := piv(E , x , y)
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FailBounds (E ; B;β; S;>) ⇒SIMP (E ; B;β; S;⊥)

if there are two contradicting bounds x ≤ c1 and x ≥ c2 in B ∪ S
for some variable x

FailDepVar≤ (E ; B;β; S; DV) ⇒SIMP (E ; B;β; S;⊥)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or (a > 0 and β(y) > c′

for all (y ≥ c′) ∈ S)

FailDepVar≥ (E ; B;β; S; DV) ⇒SIMP (E ; B;β; S;⊥)

if (x ≥ c) ∈ S, x dependent, LRA(β) 6|= x ≥ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where (if
a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or (if a < 0 and β(y) > c′

for all (y ≥ c′) ∈ S)
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FailBounds
(E ; B;β; S;>) ⇒SIMP (E ; B;β; S;⊥)

if there are two contradicting bounds x ≤ c1 and x ≥ c2 in B ∪ S
for some variable x

Example:
if {x ≥ 5, x ≤ 0} ⊆ B ∪ S, then

(E ; B;β; S;>)⇒SIMP (E ; B;β; S;⊥)
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FailBounds
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EstablishBound
(E ; B ] {x ◦ c};β; S;>) ⇒SIMP (E ; B;β; S ∪ {x ◦ c}; IV)

Example:

E :=

{
u ≈ x + 2y ,
v ≈ x − y

}
,

B := {x ≥ 0, y ≤ −1,u ≥ 1, v ≥ 2, v ≤ 3}
β := {x 7→ 0, y 7→ 0,u 7→ 0, v 7→ 0}
S := {}

(E ; B;β; {};>) ⇒SIMP (E ; B \ {x ≥ 0};β; {x ≥ 0}; IV)
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EstablishBound
(E ; B ] {x ◦ c};β; S;>) ⇒SIMP (E ; B;β; S ∪ {x ◦ c}; IV)

Example:

E :=

{
u ≈ x + 2y ,
v ≈ x − y
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B := {x ≥ 0, y ≤ −1,u ≥ 1, v ≥ 2, v ≤ 3}
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EstablishBound
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AckIndepBound
(E ; B;β; S; IV) ⇒SIMP (E ; B;β; S; DV)

if LRA(β) |= x ◦ c, for all independent variables x with bounds
x ◦ c in S

Example:

E :=

{
u ≈ x + 2y ,
v ≈ x − y

}
,

B := {v ≥ 2, v ≤ 3}
β := {x 7→ 0, y 7→ −1,u 7→ −2, v 7→ 1}
S := {x ≥ 0, y ≤ −1,u ≥ 1}

(E ; B;β; S; IV) ⇒SIMP (E ; B;β; S; DV)
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FixDepVar≥
(E ; B;β; S; DV) ⇒SIMP (E ′; B; upd(β, x , c,E ′); S; DV)

if (x ≥ c) ∈ S, x dependent, LRA(β) 6|= x ≥ c, there is an
independent variable y and equation (x ≈ ay + t) ∈ E where
(a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and E ′ := piv(E , x , y)

Example:

E :=

{
u ≈ x + 2y ,
v ≈ x − y

}
,

B := {v ≥ 2, v ≤ 3}
β := {x 7→ 0, y 7→ −1,u 7→ −2, v 7→ 1}
S := {x ≥ 0, y ≤ −1,u ≥ 1}

E ′ :=

{
x ≈ u − 2y ,
v ≈ u − 3y

}
,
β′ := upd(β,u,1,E ′)

:= {u 7→ 1, y 7→ −1, x 7→ 3, v 7→ 4}
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FailDepVar≤
(E ; B;β; S; DV) ⇒SIMP (E ; B;β; S;⊥)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

Example:

E :=

{
x ≈ u − 2y ,
v ≈ u−3y

}
,

B := {v ≥ 2}
β := {u 7→ 1, y 7→ −1, x 7→ 3, v 7→ 4}
S := {x ≥ 0, y ≤ −1,u ≥ 1, v ≤ 3}
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FailDepVar≤
(E ; B;β; S; DV) ⇒SIMP (E ; B;β; S;⊥)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

Example:

E :=

{
x ≈ u − 2y ,
v ≈ u−3y

}
,

B := {v ≥ 2}
β := {u 7→ 1, y 7→ −1, x 7→ 3, v 7→ 4}
S := {x ≥ 0, y ≤ −1,u ≥ 1, v ≤ 3}
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FailDepVar≥
(E ; B;β; S; DV) ⇒SIMP (E ; B;β; S;⊥)

if (x ≥ c) ∈ S, x dependent, β 6|=LA x ≥ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where (if
a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(if a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S)
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6.2.7 Lemma (Simplex State Invariants)
The following invariants hold for any state (Ei ; Bi ;βi ; Si ; si)
derived by⇒SIMP on a start state (E0; B0;β0; ∅;>):
(i) for every dependent variable there is exactly one equation in

E defining the variable
(ii) dependent variables do not occur on the right hand side of an

equation
(iii) LRA(β) |= Ei

(iv) for all independant variables x either βi(x) = 0 or βi(x) = c
for some bound x ◦ c ∈ Si

(v) for all assignments α it holds LRA(α) |= E0 iff LRA(α) |= Ei
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6.2.8 Lemma (Simplex Run Invariants)
For any run of⇒SIMP from start state
(E0; B0;β0; ∅;>)⇒SIMP (E1; B1;β1; S1; s1)⇒SIMP . . .:

(i) the set {βo, β1, . . .} is finite
(ii) if the sets of dependent and independent variables

for two equational systems Ei , Ej coincide, then
Ei = Ej

(iii) the set {Eo,E1, . . .} is finite
(iv) let Si not contain contradictory bounds, then

(Ei ; Bi ;βi ; Si ; si)⇒FIV,∗
SIMP is finite
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6.2.9 Corollary (Infinite Runs Contain a Cycle)
Let (E0; B0;β0; ∅;>)⇒SIMP (E1; B1;β1; S1; s1)⇒SIMP . . . be an
infinite run. Then there are two states (Ei ; Bi ;βi ; Si ; si),
(Ek ; Bk ;βk ; Sk ; sk ) such that i 6= k and
(Ei ; Bi ;βi ; Si ; si) = (Ek ; Bk ;βk ; Sk ; sk ).

November 26, 2024 473/588



Preliminaries Propositional Logic First-Order Logic Equational Logic First-Order Logic With Equality Decidable Logics Propositional Logic Modulo Theories First-Order Logic Modulo Theories

6.2.10 Definition (Reasonable Strategy)
A reasonable strategy prefers FailBounds over EstablishBounds
and the FixDepVar rules select minimal variables x , y in the
ordering ≺.
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6.2.11 Theorem (Simplex Soundness, Completeness &
Termination)
Given a reasonable strategy and initial set N of inequations and
its separation into E and B :
(i) ⇒SIMP terminates on (E ; B;β0; ∅;>),
(ii) if (E ; B;β0; ∅;>)⇒∗SIMP (E ′; B′;β; S;⊥) then N has no

solution,
(iii) if (E ; B;β0; ∅;>)⇒∗SIMP (E ′; ∅;β; B;>) and (E ; ∅;β; B;>) is a

normal form, then LRA(β) |= N,
(iv) all final states (E ′; B′;β; S; s) match either (ii) or (iii).
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