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First-Order Logic Theories
In Section 3.2 the semantics of a first-order formula is defined
with respect to all algebras that assign meaning to the symbols of
the signature. For many applications this is too crude. For
example, let us assume we consider the signature of simple
linear integer arithmetic without divisibility relations,
ΣLIA = ({LIA}, {0,1,+,−} ∪ Z, {≤, <,>,≥}). Then a standard
first-order algebra A is, e.g., LIAA = {0,1}, 0A = 0, 1A = 1,
kA = (|k | mod 2) for all k ∈ Z, +A(0,0) = 0,
+A(1,0) = +A(0,1) = +A(1,1) = 1,
−A(0,0) = −A(1,1) = −A(0,1) = 0, −A(1,0) = 1, and the
relations ≤, <, >, ≥ are interpreted as usual over the domain
{0,1}. Obviously, A is not the standard interpretation of linear
integer arithmetic, because the domain is not the integers, and ,
e.g., A |= 8 < 9 but also A |= 10 < 9.
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Is there a way to fix the semantics to the intended interpretation?
Actually, there are two: the syntactic way by requiring any algebra
A of the signature ΣLIA to satisfy a set of closed first-order
formulas, called axioms, or the semantic way of fixing a set of
algebras for ΣLIA. In both cases, the set of algebras and axioms
is a called a theory T . For both cases I assume that the axioms
are satisfiable and there is either at least on algebra in T ,
respectively.
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For the above example, the semantic way would be simply to fix
the standard linear integer interpretation for T = {ΣLIA} as the
only algebra to be considered. The syntactic way would mean to
add enough formulas such that any algebra satisfying the
formulas is the desired algebra. More concretely, the formulas

T = {{k 6≈ l | for all k , l ∈ Z, k 6= l}∪
{k < l | for all k , l ∈ Z, k < l}}

Note, that the right hand side 6= and < are the standard relations
on the integers. For any algebra A satisfying the infinitely many
axioms of T , A |= 8 < 9 and A |= 9 < 10 and LIAA will contain at
least as many different elements as the integers. So LIAA = Z is
a possible domain of an algebra for T , but also LIAA = Q would
satisfy the above axioms.
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Fixing a set of algebras is actually the more general and powerful
mechanism. However, it has also disadvantages. Given a finite
set of axioms T proving with respect to T amounts to classical
first-order theorem proving, e.g., validity is semi-decidable. Given
a set T of algebras, proving with respect to the algebras is
typically beyond first-order logic theorem proving, e.g., for
T = {ΣLIA} theorem proving means inductive theorem proving, in
general, hence, validity is no longer semi-decidable, but
undecidable.
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3.17.1 Definition (First-Order Logic Theory)
Given a first-order many-sorted signature Σ, a theory T is a
non-empty set of Σ-algebras.
For some first-order formula φ over Σ we say that φ is
T -satisfiable if there is some A ∈ T such that A(β) |= φ for some
β. We say that φ is T -valid (T -unsatisfiable) if for all A ∈ T and
all β it holds A(β) |= φ (A(β) 6|= φ). In case of validity I also write
|=T φ.
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Alternatively, T may contain a set of satisfiable axioms which
then stand for all algebras satisfying the axioms.

The Σ-algebras can be restricted to term-generated models as
long as there are “enough” constants (function) symbols in Σ, in
general infinitely many are sufficient. Due to the
Löwenheim-Skolem theorem different infinite cardinalities cannot
be distinguished by first-order formulas.
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Linear Arithmetic

I start with a syntax that already contains −, ≤, <, ≥, 6≈ and Q.
All these functions and relations are indeed expressible by
first-order forumulas over 0, 1, ≈, and >.

For the semantics there are two approaches. Either providing
axioms, i.e., closed formulas, for the above symbols and then
considering all algebras satisfying the axioms, or fixing one
particular algebra or a class of algebras.
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6.2.1 Definition (LA Syntax)
The syntax of LA is

ΣLA = ({LA}, {0,1,+,−} ∪Q, {≤, <, 6≈, >,≥})

where − is unitary and all other symbols have the usual arities.

Terms and formulas over ΣLA are built in the classical free
first-order way, see Section 3.1. All first-order notions, i.e., terms,
atoms, equations, literals, clauses, etc. carry over to LA formulas.
The atoms and terms built over the LA signature are written in
their standard infix notation, i.e., I write 3 + 5 instead of +(3,5).
Note that the signature does not contain multiplication. A term 3x
is just an abbreviation for a term x + x + x .
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6.2.2 Definition (Linear Rational Arithmetic Standard
Semantics)

The ΣLA algebra ALRA is defined by LAALRA = Q and all other
signature symbols are assigned the standard interpretations over
the rationals.

Due to the expressive LA language there is no need for negative
literals, because (¬ <)ALRA = (≥)ALRA , (¬ >)ALRA = (≤)ALRA , and
(¬ ≈)ALRA = (6≈)ALRA .
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Note the difference between the above standard semantics over
ΣLA and the free first-order semantics over ΣLA, Definition 3.2.1.
The equation 3 + 4 ≈ 5 has a model in the free first-order
semantics, hence it is satisfiable, whereas in the standard model
of linear rational arithmetic, Definition 6.2.2, the equation
3 + 4 ≈ 5 is false.

In addition, with respect to the standard LRA semantics the
definitions of validity, satisfiability coincide with truth and the
definition of unsatisfiability coincides with falsehood. This is the
result of a single algebra semantics.
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Fourier-Motzkin Quantifier Elimina-
tion

It is decidable whether a first-order formula over ΣLA is true or
false in the standard LRA semantics. This was first discovered in
1826 by J. Fourier and re-discovered by T. Motzkin in 1936 and is
called FM for short. Note that validity of a ΣLA formula with
respect to the standard first-order semantics is undecidable

The starting point of the procedure is a conjunction of atoms
without atoms of the form 6≈. These will eventually be replaced by
a disjunction, i.e., an atom t 6≈ s is replaced by t < s ∨ t > s.
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Every atom over the variables x , y1, . . . , yn can be converted into
an equivalent atom x ◦ t [~y ] or 0 ◦ t [~y ], where
◦ ∈ {<,>,≤,≥,≈, 6≈} and t [~y ] has the form

∑
i qi · yi + q0 where

qi ∈ Q.

In other words, a variable x can be either isolated on one side of
the atom or eliminated completely. This is the starting point of the
FM calculus deciding a conjunction of LA atoms without 6≈
modulo the isolation of variables and the reduction of ground
formulas to >, ⊥.
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The calculus operates on a set of atoms N. The normal forms are
conjunctions of atoms s ◦ t where s, t do not contain any
variables. These can be obviously eventually reduced to > or ⊥.
The FM calculus consists of two rules:

Substitute N ] {x ≈ t} ⇒FM N{x 7→ t}
provided x does not occur in t

Eliminate N ]
⋃

i{x ◦1i ti} ]
⋃

j{x ◦2j sj} ⇒FM

N ∪
⋃

i,j{ti ◦i.j sj}
provided x does not occur in N nor in the ti , sj , ◦1i ∈ {<,≤},
◦2j ∈ {>,≥}, and ◦i,j = > if ◦1i = < or ◦2j = >, and ◦i,j = ≥
otherwise
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If all variablies in N are implicitely existentially quantified, i.e., N
stands for ∃~x .N, then the above two rules constitute a sound and
complete decision procedure for conjunctions of LA atoms
without 6≈.

6.2.3 Lemma (FM Termination on a Conjunction of Atoms)
FM terminates on a conjunction of atoms.

6.2.4 Lemma (FM Soundness and Completeness on a
Conjunction of Atoms)
N ⇒∗FM > iff ALRA |= ∃~x .N.
N ⇒∗FM ⊥ iff ALRA 6|= ∃~x .N.
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The FM calculus on conjunctions of atoms can be extended to
arbitrary closed LRA first-order formulas φ. I always assume that
different quantifier occurrences in φ bind different variables. This
can always be obtained by renaming one variable.

The first step is to eliminate >, ⊥ from φ and to transform φ in
negation normal form, see Section 3.9. The resulting formula
only contains the operators ∀, ∃, ∧, ∨, ¬, where all negation
symbols occur in front of atoms.
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The following rule can be used to remove the negation symbols
as well:

ElimNeg χ[¬ s ◦1 t ]p ⇒FM χ[s ◦2 t ]p
where the pairs (◦1, ◦2) are given by pairs (<,≥), (≤, >), (≈, 6≈)
and their symmetric variants

The above two FM rules on conjunctions cannot cope with atoms
s 6≈ t , so they are eliminated as well:

Elim6≈ χ[s 6≈ t ]p ⇒FM χ[s < t ∨ s > t ]p
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The next step is to compute a Prenex Normal Form, a formula
{∃, ∀}x1 . . . {∃,∀}xn.φ where φ does not contain any quantifiers.
This can be done by simply applying the mini-scoping rules, see
Section 3.9, in the opposite direction:

Prenex1 χ[(∀x .ψ1) ◦ ψ2]p ⇒FM χ[∀x .(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

Prenex2 χ[(∃x .ψ1) ◦ ψ2]p ⇒FM χ[∃x .(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)
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Prenex3 χ[(∀x .ψ1) ∧ (∀y .ψ2)]p ⇒FM

χ[∀x .(ψ1 ∧ ψ2{y 7→ x})]p

Prenex4 χ[(∃x .ψ1) ∨ (∃y .ψ2)]p ⇒FM

χ[∃x .(ψ1 ∨ ψ2{y 7→ x})]p

where Prenex3 and Prenex4 are preferred over Prenex1 and
Prenex2.
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Finally, for the resulting formula {∃,∀}x1 . . . {∃, ∀}xn.φ in prenex
normal form the FM algorithm computes a DNF of φ by
exhaustively applying the rule PushConj, Section 2.5.2.

The result is a formula {∃,∀}x1 . . . {∃,∀}xn.φ where φ is a DNF of
atoms without containing an atom of the form s 6≈ t .
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Then FM on formulas considers the quantifiers iteratively in an
innermost way. For the formula {∃, ∀}x1 . . . {∃, ∀}xn.φ always the
innermost quantifier {∃, ∀}xn is considered.

If it is an existential quantifier, ∃xn, then the FM rules Substitute,
Eliminate are applied to the variable xn for each conjunct Ci of
φ = C1 ∨ . . . ∨ Cn. The result is a formula
{∃, ∀}x1 . . . {∃,∀}xn−1.(C′1 ∨ . . . ∨ C′n) which is again in prenex
DNF. Furthermore, by Lemma 6.2.4 it is equivalent to
{∃, ∀}x1 . . . {∃,∀}xn.φ.
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If the innermost quantifier is a universal quantifier ∀xn, then the
formula is replaced by {∃,∀}x1 . . . {∃,∀}xn−1¬∃xn.¬φ and the
above steps for negation normal form and DNF are repeated for
¬φ resulting in an equivalent formula
{∃, ∀}x1 . . . {∃,∀}xn−1¬∃xn.φ

′ where φ′ is in DNF and does not
contain negation symbols nor atoms s 6≈ t .

Then the FM rules Substitute, Eliminate are applied to the
variable xn for each conjunct Ci of φ′ = C1 ∨ . . . ∨ Cn. The result
is an equivalent formula {∃,∀}x1 . . . {∃, ∀}xn−1.¬(C′1 ∨ . . . ∨ C′n).
Finally, the above steps for negation normal form and DNF are
repeated for ¬(C′1 ∨ . . . ∨ C′n) resulting in an equivalent formula
{∃, ∀}x1 . . . {∃,∀}xn−1.φ

′′ where φ′ is in DNF and does not contain
negation symbols nor atoms s 6≈ t . This completes for FM
decision procedure for LRA formulas.
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Every LRA formula can by reduced to > or ⊥ via the FM decision
procedure. Therefore LRA is called a complete theory, i.e., every
closed formula over the signature of LRA is either true or false.

LA formulas over the rationals and over the reals are
indistinguishable by first-order formulas over the signature of
LRA. These properties do not hold for extended signatures, e.g.,
then additional free symbols are introduced. Furthermore, FM is
no decision procedures over the integers, even if the LA syntax is
restricted to integer constants.
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FM Complexity

The complexity of the FM calculus depends mostly on the
quantifier alternations in {∃,∀}x1 . . . {∃, ∀}xn.φ.

In case an existential quantifier ∃ is eliminated, the formula size
grows worst-case quadratically, therefore O(n2) runtime. For m
quantifiers ∃ . . . ∃: a naive implementation needs worst-case
O(n2m

) runtime. There exist optimizations that reduce the
worst-case runtime for FM to single exponential. The idea is to
eliminate redundant inequalities whenever possible.
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If there are m quantifier alternations ∃∀∃∀ . . . ∃∀, a CNF to DNF
conversion is required after each step. Each conversion has a
worst-case exponential run time, see Section 2.5. Therefore, the
overall procedure has a worst-case non-elementary runtime.
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