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Orient (E ] {s
.
≈ t}; R) ⇒KBC (E ; R ∪ {s → t})

if s � t

Delete (E ] {s ≈ s}; R) ⇒KBC (E ; R)

Deduce (E ; R) ⇒KBC (E ∪ {s ≈ t}; R)

if 〈s, t〉 ∈ cp(R)
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Simplify-Eq (E ] {s
.
≈ t}; R) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u

R-Simplify-Rule (E ; R ] {s → t}) ⇒KBC (E ; R ∪ {s → u})
if t →R u

L-Simplify-Rule (E ; R ] {s → t}) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u using a rule l → r ∈ R so that s A l , see below.
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Trivial equations cannot be oriented and since they are not
needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in R into
additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t .

The simplification rules are not needed but serve as reduction
rules, removing redundancy from the state. Simplification of the
left-hand side may influence orientability and orientation of the
result. Therefore, it yields an equation. For technical reasons, the
left-hand side of s → t may only be simplified using a rule l → r ,
if l → r cannot be simplified using s → t , that is, if s A l , where
the encompassment quasi-ordering A∼ is defined by s A∼ l if
s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.
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4.4.4 Proposition (Knuth-Bendix Completion Correctness)
If the completion procedure on a set of equations E is run,
different things can happen:

1. A state where no more inference rules are
applicable is reached and E is not empty. ⇒ Failure
(try again with another ordering?)

2. A state where E is empty is reached and all critical
pairs between the rules in the current R have been
checked.

3. The procedure runs forever.
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4.4.5 Definition (Run)
A (finite or infinite) sequence
(E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . with R0 = ∅ is
called a run of the completion procedure with input E0 and �. For
a run, E∞ =

⋃
i≥0 Ei and R∞ =

⋃
i≥0 Ri .

4.4.6 Definition (Persistent Equations)
The sets of persistent equations of rules of the run are
E∗ =

⋃
i≥0
⋂

j≥i Ej and R∗ =
⋃

i≥0
⋂

j≥i Rj .

Note: If the run is finite and ends with En,Rn then E∗ = En and
R∗ = Rn.
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4.4.7 Definition (Fair Run)
A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every critical pair
between persisting rules is computed at some step of the
derivation).

4.4.10 Theorem (KBC Soundness)
Let (E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . be a fair run
and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪ R∞ is equivalent to a rewrite
proof in R∗,

2. R∗ is equivalent to E0 and
3. R∗ is convergent.
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Complexity

3.15.2 Theorem (Equational Logic Validity is Undecidable)
Validity of an equation modulo a set of equations is undecidable.

(Proof Scetch) Given a PCP with word lists (u1, . . . ,un) and
(v1, . . . , vn) over alphabet {a,b}, it is represented by two unary
functions ga and gb, constants ε, c,d , and a binary function fR ,
all over some sort S. Then a word pair ui , vi is encoded by the
equation fR(ui(x), vi(y)) ≈ fR(x , y) and the start state with the
empty word is encoded by equation fR(ε, ε) ≈ d and the final
state identifying two equal words different from ε by the equations
fR(ga(x),ga(x)) ≈ c, fR(gb(x),gb(x)) ≈ c. I call the set of these
equations E . Now the PCP over the two word lists has a solution
iff E |= c ≈ d .
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4.4.11 Corollary (KBC Termination)
Termination of⇒KBC is undecidable for some given finite set of
equations E .

(Proof Scetch) Using exactly the construction of Theorem 3.15.2
it remains to be shown that all computed critical pairs can be
oriented. Critical pairs corresponding to the search for a PCP
solution result in equations fR(u(x), v(y)) ≈ fR(u′(x), v ′(y)) or
fR(u′(x), v ′(x)) ≈ c. By chosing an appropriate ordering, all these
equations can be oriented. Thus⇒KBC does not produce any
unorientable equations. The rest follows from Theorem 3.15.2.
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Unfailing Completion

Classical completion: Try to transform a set E of equations into
an equivalent convergent TRS. Fail, if an equation can neither be
oriented nor deleted.
Unfailing completion: If an equation cannot be oriented,
orientable instances can still be used for rewriting. Note: If � is
total on ground terms, then every ground instance of an equation
is trivial or can be oriented. The goal is to derive a ground
convergent set of equations.
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Let E be a set of equations, let � be a reduction ordering. The
relation→E� is defined by

s →E� t iff there exist (u ≈ v) ∈ E or (v ≈ u) ∈ E ,
p ∈ pos(s), and σ : X → T (Σ,X ),
so that s|p = uσ and t = s[vσ]p
and uσ � vσ.

Note: →E� is terminating by construction.
From now on let � be a reduction ordering that is total on ground
terms.
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E is called ground convergent w.r.t. �, if for all ground terms s
and t with s ↔∗E t there exists a ground term v so that
s →∗E� v ∗

E�← t . (Analogously for E ∪ R.)
As for standard completion, ground convergence is established
by computing critical pairs.
However, the ordering � is not total on non-ground terms. Since
sθ � tθ implies s 6� t , � is approximated on ground terms by 6�
on arbitrary terms.
Let ui

.
≈ vi (i = 1,2) be equations in E whose variables have

been renamed so that vars(u1
.
≈ v1) ∩ vars(u2

.
≈ v2) = ∅. Let

p ∈ pos(u1) be a position so that u1|p is not a variable, σ is an
mgu of u1|p and u2, and uiσ 6� viσ (i = 1,2). Then
〈v1σ, (u1σ)[v2σ]p〉 is called a semi-critical pair of E with respect to
�.
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The set of all semi-critical pairs of E is denoted by sp�(E).
Semi-critical pairs of E ∪ R are defined analogously. If→R ⊆ �,
then cp(R) and sp�(R) agree.
Note: In contrast to critical pairs, it may be necessary to consider
overlaps of a rule with itself at the top. For instance, if
E = {f (x) ≈ g(y)}, then 〈g(y),g(y ′)〉 is a non-trivial semi-critical
pair.
The Deduce rule takes now the following form:

Deduce (E ; R) ⇒UKBC (E ∪ {s ≈ t}; R)

if 〈s, t〉 ∈ sp�(E ∪ R)
The other rules are inherited from⇒KBC . Moreover, the fairness
criterion for runs is replaced by

sp�(E∗ ∪ R∗) ⊆ E∞

(i.e., if every semi-critical pair between persisting rules or
equations is computed at some step of the derivation).
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Analogously to Theorem 4.4.10 now the following theorem is
obtained:

4.4.12 Theorem (Convergence)
Let (E0,R0)⇒UKBC (E1,R1)⇒UKBC (E2,R2)⇒ . . . be a fair run;
let R0 = ∅. Then

1. E∗ ∪ R∗ is equivalent to E0, and
2. E∗ ∪ R∗ is ground convergent.

Moreover one can show that, whenever there exists a reduced
convergent R so that ≈E0 = ↓R and→R ∈ �, then for every fair
and simplifying run E∗ = ∅ and R∗ = R up to variable renaming.
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Here R is called reduced, if for every l → r ∈ R, both l and r are
irreducible w.r.t. R \ {l → r}. A run is called simplifying, if R∗ is
reduced, and for all equations u ≈ v ∈ E∗, u and v are
incomparable w.r.t. � and irreducible w.r.t. R∗.
Unfailing completion is refutationally complete for equational
theories:
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