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Automated Reasoning

Given a specification of a system, develop technology

logics,
calculi,
algorithms,
implementations,

to automatically execute the specification and to automatically
prove properties of the specification.
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Concept

Slides: Definitions, Lemmas, Theorems, ...
Written: Examples, Proofs, . ..
Speech: Motivate, Explain, ...

Script: Slides, partially Blackboard . ..

Exams: able to calculate — pass
understand — (very) good grade
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Orderings

1.4.1 Definition (Orderings)

A (partial) ordering = (or simply ordering) on a set M, denoted
(M, ), is a reflexive, antisymmetric, and transitive binary relation
on M.

It is a total ordering if it also satisfies the totality property.

A strict (partial) ordering > is a transitive and irreflexive binary
relation on M.

A strict ordering is well-founded, if there is no infinite descending
chain my = my = mo = ... where m; € M.
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1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, >), an element m € M is called
minimal, if there is no element n’ € M so that m = n'.

An element m € M is called smallest, if m" = mforallm e M
different from m.

gl nstitut October 17, 2024 5/588




Preliminaries Propositional Logic First-Order Logic

00@0000000000 0000000000000 00000000000 00000V VODVTVRTVITODDODVRTDIVODODODDRDDK

Multisets

Given a set M, a multiset S over M is a mapping S: M — N,
where S specifies the number of occurrences of elements m of
the base set M within the multiset S. | use the standard set
notations €, c, C, U, N with the analogous meaning for multisets,
for example (S U Sy)(m) = S;(m) + Sz(m).

A multiset S over a set M is finite if {m € M| S(m) > 0} is finite.
For the purpose of this lecture | only consider finite multisets.
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1.4.5 Definition (Lexicographic and Multiset Ordering
Extensions)

Let (My, =1) and (M», >2) be two strict orderings.

Their lexicographic combination = (1, >2) on My x Mo is
defined as (mq, mp) >~ (m,, m}) iff my =4 m, or my = m} and

My 5 M.

Let (M, ) be a strict ordering.

The multiset extension =, to multisets over M is defined by

Si mu S2iff S £ SoandVm e M[Sa(m) > Si(m) — 3m €
M(m' = mA Si(m') > S(m'))].

October 17, 2024 7/588
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1.4.7 Proposition (Properties of > e, ™ mu)

Let (M, =), (My,>1), and (Ma, >») be orderings. Then
lex IS @n ordering on My x M.

if (My,>1), (M2, =) are well-founded SO iS > |ex.

if (My,>=1), (Ma, =2) are total s0 is >|ex.

>mul IS @an ordering on multisets over M.

if (M, >) is well-founded s0 is >y

. if (M, ) is total 0O is >y

Please recall that multisets are finite.

25 55 b g o
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Induction

Theorem (Noetherian Induction)

Let (M, ) be a well-founded ordering, and let Q be a predicate
over elements of M. If for all m € M the implication

if Q(m'), for all M € M so that m = m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.
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Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A rewrite system is a pair (M, —), where M is a non-empty set
and — C M x M is a binary relation on M.

-0 ={(a,a)|aeM} identity

VL N S i + 1-fold composition

=+ = Upo transitive closure

—* = Upsg—' = 2T U= reflexive transitive closure
= = U= reflexive closure

-1 =+ ={(b,c)|c— b} inverse

< = U+ symmetric closure

ot = (&)t transitive symmetric closure
«F = (o) refl. trans. symmetric closure
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1.6.2 Definition (Reducible)
Let (M, —) be a rewrite system. An element a € M is reducible, if
there is a b € M such that a — b.

An element a € M is in normal form (irreducible), if it is not
reducible.

An element ¢ € M is a normal form of b, if b —* c and c is in
normal form, denoted by ¢ = bJ.

Two elements b and c are joinable, if there is an a so that

b —* a*— c, denoted by b | c.
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1.6.3 Definition (Properties of —)

A relation — is called
Church-Rosser if b<«+* cimplies b ¢
confluent if b a—* cimpliesb | c
locally confluent if b+« a— cimpliesb | c
terminating if there is no infinite descending chain

bo — b1 — bg 500

normalizing if every b € A has a normal form
convergent if it is confluent and terminating
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1.6.4 Lemma (Termination vs. Normalization)
If — is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, —):
(i) — has the Church-Rosser property.
(i) — is confluent.

1.6.6 Lemma (Newman’s Lemma)

Let (M, —) be a terminating rewrite system. Then the following
properties are equivalent:

(i) — is confluent

(ii) — is locally confluent
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LA Equations Rewrite System

M is the set of all LA equations sets N over Q

= includes normalizing the equation

Eliminate {Xx=sx=t}WN =ac {x=s,x=t,s=t}UN
provided s At,ands=t¢ N

Fail {g1 =@t N =1 0
provided g1, g2 € Q, g1 # Qo
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LAE Redundancy

Subsume {s=t8=t}UN =ae {s=t}UN
provided s = t and gs’ = qt’ are identical for some g € Q
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Rewrite Systems on Logics: Calculi

Validity

Satisfiability

Sound

If the calculus derives a
proof of validity for the
formula, it is valid.

If the calculus derives
satisfiability of the for-
mula, it has a model.

Complete

If the formula is valid, a
proof of validity is deriv-
able by the calculus.

If the formula has a
model, the calculus de-
rives satisfiability.

Strongly
Complete

For any validity proof of
the formula, there is a
derivation in the calcu-
lus producing this proof.

l l I I I max planck institut
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For any model of the
formula, there is a
derivation in the cal-
culus producing this
model.
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Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(X) of propositional formulas over a signature ¥, is
inductively defined by:

PROP(X) Comment

1 connective | denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥

(—o) connective — denotes “negation”
(¢ ANyp)  connective A denotes “conjunction”
(p V1)  connective v denotes “disjunction”
(¢ — v) connective — denotes “implication”
(¢ <> 1) connective +» denotes “equivalence”

where ¢, 1) € PROP(X).
inn p | I O October 17, 2024 17/588
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Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Y -valuation is a map
A:X —{0,1}.

where {0, 1} is the set of truth values. A partial X-valuation is a
map A" : ¥ — {0,1} where ¥’ C ¥.

October 17, 2024 18/588
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2.2.2 Definition (Semantics)

A Y -valuation A is inductively extended from propositional
variables to propositional formulas ¢, € PROP(X) by
A(L) == 0
A(T) = 1
A(-¢) = 1-A(9)
Alpnep) = min({A(¢), A¥)})
Al vy) = max({A(¢), A(¥)})
Alp = v) = max({1-A(¢), A¥)})
Al < ¢) = if A(¢) = A(v) then 1 else 0
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If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is
satisfiable and we write A = ¢. In this case A is a model of ¢.

If A(¢) = 1 for all X-valuations A of a formula ¢ then ¢ is valid
and we write = ¢.

If there is no X-valuation A for a formula ¢ where A(¢) =1 we
say ¢ is unsatisfiable.

A formula ¢ entails v, written ¢ |= 1, if for all X-valuations A
whenever A = ¢ then A |= 1.
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Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an atom. It is also called a
(positive) literal and its negation —P is called a (negative) literal.

The functions comp and atom map a literal to its complement, or
atom, respectively: if comp(—P) = P and comp(P) = =P,
atom(—P) = P and atom(P) = P for all P € ¥. Literals are
denoted by letters L, K. Two literals P and —P are called
complementary.

A disjunction of literals Ly Vv ...V L, is called a clause. A clause is
identified with the multiset of its literals.

October 17, 2024 21/588
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2.1.3 Definition (Position)

A position is a word over N. The set of positions of a formula ¢ is
inductively defined by

pos(¢) = {e}ifpe{T,LtorpeXx
pos(—¢) = {e}U{1p|p € pos(¢)}
pos(potp) = {efU{lp|pe pos(¢)}U{2p|p e pos(¢)}

where o € {A,V, —, <}
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The prefix order < on positions is defined by p < q if there is
some p’ such that ppo’ = q. Note that the prefix order is partial,
e.g., the positions 12 and 21 are not comparable, they are
“parallel”, see below.

The relation < is the strict part of <, i.e., p < g if p < g but not
q=<p.

The relation || denotes incomparable, also called parallel
positions, i.e., p || q if neither p < g, nor q < p.

A position p is above q if p < q, pis strictly above q if p < g, and
p and q are parallelif p || g.
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The size of a formula ¢ is given by the cardinality of pos(¢):
6] := | pos(9).

The subformula of ¢ at position p € pos(¢) is inductively defined
by ¢lc := ¢, =¢l1p == ¢lp, and (1 o $2)|jp := ¢ilp Where i € {1,2},
o€ {A,V,—, <}

Finally, the replacement of a subformula at position p € pos(¢) by
a formula ¢ is inductively defined by ¢[v]. := ¢

(~)[]1p = —6[lp, and (61 0 d2)]1p = (1[¢]p o b2).
(01 0 2)[W]2p := (@1 © P2[t)]p), where o € {A,V, —, <}
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2.1.5 Definition (Polarity)

The polarity of the subformula ¢|, of ¢ at position p € pos(¢) is
inductively defined by

pol(¢p,e) = 1
pol(—¢, 1p) — pol(¢, p)
pol(¢1 o ¢2,IP; = pol(¢;,p) if oe{A v} ie{1,2}
)
)

p0|(¢1 — ¢27 1,0 = po'(d)'lap)
pol(¢1 — ¢2,2p pol(¢2, p)
pol(¢1 <> ¢o,ip) = 0 if i€ {1,2}
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Valuations can be nicely represented by sets or sequences of
literals that do not contain complementary literals nor duplicates.

If Ais a (partial) valuation of domain X then it can be represented
by the set
{P|Pexand A(P)=1}U{=P| P € X and A(P) = 0}.

Another, equivalent representation are Herbrand interpretations
that are sets of positive literals, where all atoms not contained in
an Herbrand interpretation are false. If A is a total valuation of
domain X then it corresponds to the Herbrand interpretation
{P|Pexand A(P)=1}.
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2.2.4 Theorem (Deduction Theorem)
it =d -9
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2.2.6 Lemma (Formula Replacement)

Let ¢ be a propositional formula containing a subformula « at
position p, i.e., ¢|p = ¥. Furthermore, assume |= ¢ <> x.
Then = ¢ < ¢[x]p.
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Normal Forms

Definition (CNF, DNF)

A formula is in conjunctive normal form (CNF) or clause normal
form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction
of conjunctions of literals.
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Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P,

(i) conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary literals
Pand -P

inn p | October 17, 2024 30/588



Preliminaries Propositional Logic First-Order Logic

0000000000000 0OOO00O00O0O0O0O00 8000000000000 00INDVBVVVDTDOODODVVVDTVODODDDVVRTOODODODDDDVDDIK

Basic CNF Transformation

ElimEquiv xl(¢ < ¥)lp =Benr X[(@ = ¥) A (Y — 9)lp
Elimimp xl(@ = ¥V)lp =senr X[(—¢ V ¥)]p

PushNeg?1 x[-(oVY)p =BenF X[(—¢ A —)]p

PushNeg2  x[~(¢A¥)]lp =Bene XI(—9V —9)]p

PushNeg3  x[-—¢]p =BcnF X[¢lp

PushDisj X[(#1 A ¢2) Vo =Bonr X[(d1 V) A (¢2V P)lp

ElimTB1 x[(@AT)lp =BenF x[6lp
ElimTB2 xl(¢ A L)lp =8ene X[Lp
ElimTB3 x[(¢V T)lp =8ene X[ Tlp
ElimTB4 xl(@V LD)lp =Bene x[4lp
ElimTB5 x[=Llp =8ene X[ Tlp
ElimTB6 x[=Tlp =Bene X[L]p
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Basic CNF Algorithm

1 Algorithm: 2 benf(¢)

Input : A propositional formula ¢.
Output A propositional formula v equivalent to ¢ in CNF.

whilerule (ElimEquiv(¢)) do ;
\’Nhilerule (Elimlmp(¢)) do ;
whilerule (ElimTB1(¢),. .., EimTB6(s)) do :

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;

© 00 N O g s~ ODN

-
o

whilerule (PushDisj(¢)) do ;

)

return ¢;

—l—“—p—l—l pma planck institu Qctober 17, 2024 32/588

Y
[y

)




Preliminaries Propositional Logic First-Order Logic

0000000000000 0OO00O0000O0O0000 80000000000 00INDVBVVVDTVOODODVVVDTVODODDDVVRTOODODODDDDDDDIK

Advanced CNF Algorithm

For the formula

P, <—>(P2<—>(P3<—>(---(Pn—1 HPn))))

the basic CNF algorithm generates a CNF with 2"~ clauses.
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2.5.4 Proposition (Renaming Variables)
Let P be a propositional variable not occurring in [¢]p.
1. If pol(¢, p) = 1, then ¥[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.
2. If pol(%, p) = —1, then ¥[¢],, is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.
3. If pol(, p) = 0, then y[¢], is satisfiable if and only if
P[Plp A (P <« ¢) is satisfiable.
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Renaming

SimpleRenaming ¢ =>simpren @[P1lp,[Palp, - - - [Pnlp, N
def(<;5,p1 , P1) VANPIRAN def(¢[P1 ]p1 [Pg]p2 - [Pn_1]pn71,pn, Pn)

provided {py, ..., pn} C pos(¢) and for all i, i + j either p; || pi; or
pi > pitj and the P; are different and new to ¢

Simple choice: choose {p1, ..., pn} to be all non-literal and
non-negation positions of ¢.
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Renaming Definition

(P — 9lp) if pol(y,p) =1
def(y, p, P) == ¢ (¢[p = P) if pol(y,p) = —1
(P 9lp) if pol(,p) =0
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Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,

¢|p is a disjunctive formula in ¢, g # ¢, and for all positions r with
p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|, is conjunctive in ¢ if ¢|, is a conjunction and

pol(¢, p) € {0, 1} or ¢|p is a disjunction or implication and
pol(¢, p) € {0, —1}.

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0,1} or ¢|, is a conjunction and

pol(¢, p) € {0,—1}.
i p N fhinstiu October 17, 2024 37/588
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Polarity Dependent Equivalence
Elimination

ElimEquivli  x[(¢ < ¥)]lp =acnF X[(¢ = ¥) A (¥ — 9)lp
provided pol(x, p) € {0,1}

ElimEquiv2  x[(¢ < ¥)lp =acNF X[(@ A D) V (= A =9)]p
provided pol(x, p) = —1
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Extra T, L Elimination Rules

ElimTB7 x[¢ — Llp =acne x[9lp
ElimTB8 x[L = 9l =acne X[Tlp
ElimTB9 x[¢ — Tlp =acne X[Tlp
ElimTB10 XIT = ¢lp =nacnF X[9lp
ElimTB11 x[¢ < Llp =acne X[9lp

ElimTB12 xlo < Tlp =acnF X[¢lp

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of <.
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Advanced CNF Algorithm

1 Algorithm: 3 acnf(¢)

Input : A formula ¢.
Output A formula ¢ in CNF satisfiability preserving to ¢.

whilerule (EimTB1(¢),.. ..ElimTB12(¢)) do ;

SimpleRenaming(¢) on obvious positions;
whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;

\’Nhilerule (Elimlmp(¢)) do ;

© 00 N O g s~ 0N

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;

-
o

whilerule (PushDisj(¢)) do ;
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