

Automated Reasoning Christoph Weidenbach

Max Planck Institute for Informatics

October 17, 2024

Automated Reasoning

Given a specification of a system, develop technology

logics, calculi, algorithms, implementations,

to automatically execute the specification and to automatically prove properties of the specification.

Concept

Slides: Definitions, Lemmas, Theorems, ...

Written: Examples, Proofs, ...

Speech: Motivate, Explain, ...

Script: Slides, partially Blackboard ...

Exams: able to calculate → pass

understand → (very) good grade

Orderings

1.4.1 Definition (Orderings)

A *(partial) ordering* \succeq (or simply ordering) on a set M, denoted (M,\succeq) , is a reflexive, antisymmetric, and transitive binary relation on M

It is a total ordering if it also satisfies the totality property.

A *strict* (partial) ordering \succ is a transitive and irreflexive binary relation on M.

A strict ordering is *well-founded*, if there is no infinite descending chain $m_0 > m_1 > m_2 > \dots$ where $m_i \in M$.

1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, \succ) , an element $m \in M$ is called *minimal*. if there is no element $m' \in M$ so that $m \succ m'$.

An element $m \in M$ is called *smallest*, if $m' \succ m$ for all $m' \in M$ different from m.

Multisets

Given a set M, a multiset S over M is a mapping $S: M \to \mathbb{N}$, where S specifies the number of occurrences of elements m of the base set M within the multiset S. I use the standard set notations \in , \subset , \subseteq , \cup , \cap with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset S over a set M is *finite* if $\{m \in M \mid S(m) > 0\}$ is finite. For the purpose of this lecture I only consider finite multisets.

1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let (M_1, \succ_1) and (M_2, \succ_2) be two strict orderings.

Their *lexicographic combination* $\succ_{lex} = (\succ_1, \succ_2)$ on $M_1 \times M_2$ is defined as $(m_1, m_2) \succ (m'_1, m'_2)$ iff $m_1 \succ_1 m'_1$ or $m_1 = m'_1$ and $m_2 \succ_2 m'_2$.

Let (M, \succ) be a strict ordering.

The *multiset extension* \succ_{mul} to multisets over M is defined by $S_1 \succ_{\text{mul}} S_2$ iff $S_1 \neq S_2$ and $\forall m \in M[S_2(m) > S_1(m) \rightarrow \exists m' \in M(m' \succ m \land S_1(m') > S_2(m'))].$

1.4.7 Proposition (Properties of \succ_{lex} , \succ_{mul})

Let (M, \succ) , (M_1, \succ_1) , and (M_2, \succ_2) be orderings. Then

- 1. \succ_{lex} is an ordering on $M_1 \times M_2$.
- 2. if (M_1, \succ_1) , (M_2, \succ_2) are well-founded so is \succ_{lex} .
- 3. if (M_1, \succ_1) , (M_2, \succ_2) are total so is \succ_{lex} .
- 4. \succ_{mul} is an ordering on multisets over M.
- 5. if (M, \succ) is well-founded so is \succ_{mul} .
- 6. if (M, \succ) is total so is \succ_{mul} .

Please recall that multisets are finite.

Induction

Theorem (Noetherian Induction)

Let (M, \succ) be a well-founded ordering, and let Q be a predicate over elements of M. If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ so that $m \succ m'$, (induction hypothesis) then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all $m \in M$.

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair (M, \rightarrow) , where M is a non-empty set and $\rightarrow \subseteq M \times M$ is a binary relation on M.

identity

i + 1-fold composition

transitive closure

reflexive transitive closure

reflexive closure

inverse

symmetric closure

transitive symmetric closure

refl. trans. symmetric closure

1.6.2 Definition (Reducible)

Let (M, \rightarrow) be a rewrite system. An element $a \in M$ is *reducible*, if there is a $b \in M$ such that $a \rightarrow b$.

An element $a \in M$ is in normal form (irreducible), if it is not reducible.

An element $c \in M$ is a *normal form* of b, if $b \to^* c$ and c is in normal form, denoted by $c = b \downarrow$.

Two elements b and c are *joinable*, if there is an a so that $b \rightarrow^* a \not\leftarrow c$, denoted by $b \downarrow c$.

1.6.3 Definition (Properties of \rightarrow)

A relation → is called

Church-Rosser if $b \leftrightarrow^* c$ implies $b \downarrow c$

confluent if $b *\leftarrow a \rightarrow * c$ implies $b \downarrow c$

locally confluent if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$

terminating if there is no infinite descending chain

 $b_0 \rightarrow b_1 \rightarrow b_2 \dots$

normalizing if every $b \in A$ has a normal form

convergent if it is confluent and terminating

1.6.4 Lemma (Termination vs. Normalization)

If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, \rightarrow) :

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

1.6.6 Lemma (Newman's Lemma)

Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:

- (i) \rightarrow is confluent
- (ii) \rightarrow is locally confluent

LA Equations Rewrite System

M is the set of all LA equations sets N over \mathbb{Q} $\stackrel{.}{=}$ includes normalizing the equation

Eliminate $\{x \doteq s, x \doteq t\} \uplus N \Rightarrow_{\mathsf{LAE}} \{x \doteq s, x \doteq t, s \doteq t\} \cup N$ provided $s \neq t$, and $s \doteq t \notin N$

Fail
$$\{q_1 \doteq q_2\} \uplus N \Rightarrow_{\mathsf{LAE}} \emptyset$$
 provided $q_1, q_2 \in \mathbb{Q}, q_1 \neq q_2$

LAE Redundancy

Subsume
$$\{s \doteq t, s' \doteq t'\} \uplus N \Rightarrow_{\mathsf{LAE}} \{s \doteq t\} \cup N$$
 provided $s \doteq t$ and $qs' \doteq qt'$ are identical for some $q \in \mathbb{Q}$

Rewrite Systems on Logics: Calculi

	Validity	Satisfiability
Sound	If the calculus derives a proof of validity for the formula, it is valid.	If the calculus derives satisfiability of the formula, it has a model.
Complete	If the formula is valid, a proof of validity is derivable by the calculus.	If the formula has a model, the calculus derives satisfiability.
Strongly Complete	For any validity proof of the formula, there is a derivation in the calcu- lus producing this proof.	For any model of the formula, there is a derivation in the calculus producing this model.

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set $PROP(\Sigma)$ of *propositional formulas* over a signature Σ , is inductively defined by:

$PROP(\Sigma)$	Comment	
	connective \perp denotes "false"	
Т	connective ⊤ denotes "true"	
Р	for any propositional variable $P \in \Sigma$	
$(\neg \phi)$	connective ¬ denotes "negation"	
$(\phi \wedge \psi)$	connective ∧ denotes "conjunction"	
$(\phi \lor \psi)$	connective ∨ denotes "disjunction"	
$(\phi o \psi)$	${\sf connective} \to {\sf denotes~`implication''}$	
$(\phi \leftrightarrow \psi)$	$connective \leftrightarrow denotes \ "equivalence"$	

where $\phi, \psi \in \mathsf{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ-valuation is a map

$$\mathcal{A}:\Sigma \to \{0,1\}.$$

where $\{0,1\}$ is the set of *truth values*. A *partial* Σ -valuation is a map $\mathcal{A}': \Sigma' \to \{0,1\}$ where $\Sigma' \subset \Sigma$.

2.2.2 Definition (Semantics)

A Σ -valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in PROP(\Sigma)$ by

$$\begin{array}{rcl} \mathcal{A}(\bot) &:= & 0 \\ \mathcal{A}(\top) &:= & 1 \\ \mathcal{A}(\neg \phi) &:= & 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \land \psi) &:= & \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \lor \psi) &:= & \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) &:= & \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) &:= & \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then 1 else 0} \end{array}$$

If $\mathcal{A}(\phi) = 1$ for some Σ -valuation \mathcal{A} of a formula ϕ then ϕ is satisfiable and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a model of ϕ .

If $\mathcal{A}(\phi) = 1$ for all Σ -valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi)=1$ we say ϕ is *unsatisfiable*.

A formula ϕ entails ψ , written $\phi \models \psi$, if for all Σ-valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an *atom*. It is also called a *(positive) literal* and its negation $\neg P$ is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $\mathsf{comp}(\neg P) = P$ and $\mathsf{comp}(P) = \neg P$, $\mathsf{atom}(\neg P) = P$ and $\mathsf{atom}(P) = P$ for all $P \in \Sigma$. Literals are denoted by letters L, K. Two literals P and $\neg P$ are called *complementary*.

A disjunction of literals $L_1 \vee ... \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A position is a word over $\mathbb N.$ The set of positions of a formula ϕ is inductively defined by

```
\begin{array}{ll} \operatorname{\mathsf{pos}}(\phi) &:= & \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\ \operatorname{\mathsf{pos}}(\neg \phi) &:= & \{\epsilon\} \cup \{\mathsf{1}p \mid p \in \operatorname{\mathsf{pos}}(\phi)\} \\ \operatorname{\mathsf{pos}}(\phi \circ \psi) &:= & \{\epsilon\} \cup \{\mathsf{1}p \mid p \in \operatorname{\mathsf{pos}}(\phi)\} \cup \{\mathsf{2}p \mid p \in \operatorname{\mathsf{pos}}(\psi)\} \\ \text{where } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}. \end{array}
```


The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that pp'=q. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation < is the strict part of \le , i.e., p < q if $p \le q$ but not $q \le p$.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position p is above q if $p \le q$, p is strictly above q if p < q, and p and q are parallel if $p \parallel q$.

The *size* of a formula ϕ is given by the cardinality of $pos(\phi)$: $|\phi| := |pos(\phi)|$.

The *subformula* of ϕ at position $p \in pos(\phi)$ is inductively defined by $\phi|_{\epsilon} := \phi, \neg \phi|_{1p} := \phi|_p$, and $(\phi_1 \circ \phi_2)|_{ip} := \phi_i|_p$ where $i \in \{1, 2\}, \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$

Finally, the *replacement* of a subformula at position $p \in pos(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2p} := (\phi_1 \circ \phi_2[\psi]_p)$, where $\circ \in \{\land, \lor, \to, \leftrightarrow\}$.

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in pos(\phi)$ is inductively defined by

$$\begin{array}{rcl} \operatorname{pol}(\phi,\epsilon) & := & 1 \\ \operatorname{pol}(\neg\phi,1p) & := & -\operatorname{pol}(\phi,p) \\ \operatorname{pol}(\phi_1\circ\phi_2,ip) & := & \operatorname{pol}(\phi_i,p) & \text{if } \circ \in \{\land,\lor\}, \, i \in \{1,2\} \\ \operatorname{pol}(\phi_1\to\phi_2,1p) & := & -\operatorname{pol}(\phi_1,p) \\ \operatorname{pol}(\phi_1\to\phi_2,2p) & := & \operatorname{pol}(\phi_2,p) \\ \operatorname{pol}(\phi_1\leftrightarrow\phi_2,ip) & := & 0 & \text{if } i \in \{1,2\} \end{array}$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If ${\mathcal A}$ is a (partial) valuation of domain Σ then it can be represented by the set

$$\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0\}.$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If $\mathcal A$ is a total valuation of domain Σ then it corresponds to the Herbrand interpretation $\{P\mid P\in \Sigma \text{ and } \mathcal A(P)=1\}.$

2.2.4 Theorem (Deduction Theorem)

$$\phi \models \psi \text{ iff } \models \phi \rightarrow \psi$$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position p, i.e., $\phi|_p = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_p$.

Normal Forms

Definition (CNF, DNF)

A formula is in *conjunctive normal form (CNF)* or *clause normal form* if it is a conjunction of disjunctions of literals, or in other words, a conjunction of clauses.

A formula is in *disjunctive normal form (DNF)*, if it is a disjunction of conjunctions of literals.

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

- (i) a formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$,
- (ii) conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$

Basic CNF Transformation

```
ElimEquiv
                                   \chi | (\phi \leftrightarrow \psi) |_{p} \Rightarrow_{\mathsf{BCNF}} \chi [ (\phi \to \psi) \land (\psi \to \phi) ]_{p}
Elimlmp
                                   \chi[(\phi \to \psi)]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \psi)]_{p}
                                   \chi[\neg(\phi \lor \psi)]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg\phi \land \neg\psi)]_{p}
PushNea1
                                   \chi[\neg(\phi \land \psi)]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg\phi \lor \neg\psi)]_{p}
PushNeg2
PushNea3
                                   \chi[\neg\neg\phi]_p \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_p
                                   \chi[(\phi_1 \land \phi_2) \lor \psi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi_1 \lor \psi) \land (\phi_2 \lor \psi)]_{\rho}
PushDisi
                                   \chi[(\phi \wedge \top)]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{p}
FlimTR1
                                   \chi[(\phi \wedge \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}
FlimTR2
FlimTB3
                                    \chi[(\phi \lor \top)]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{p}
                                    \chi[(\phi \lor \bot)]_{\mathcal{D}} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\mathcal{D}}
FlimTR4
                                    \chi[\neg\bot]_p \Rightarrow_{\mathsf{BCNF}} \chi[\top]_p
ElimTB5
                                    \chi[\neg\top]_p \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_p
ElimTB6
```


Basic CNF Algorithm

```
1 Algorithm: 2 bcnf(\phi)
   Input: A propositional formula \phi.
   Output A propositional formula \psi equivalent to \phi in CNF.
   whilerule (ElimEquiv(\phi)) do ;
 3
   whilerule (ElimImp(\phi)) do ;
 5
   whilerule (ElimTB1(\phi),...,ElimTB6(\phi)) do ;
   whilerule (PushNeg1(\phi),...,PushNeg3(\phi)) do;
 9
   whilerule (PushDisi(\phi)) do :
11
   return \phi:
```

Advanced CNF Algorithm

For the formula

$$P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))$$

the basic CNF algorithm generates a CNF with 2^{n-1} clauses.

2.5.4 Proposition (Renaming Variables)

Let P be a propositional variable not occurring in $\psi[\phi]_p$.

- 1. If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\mathsf{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \mathsf{def}(\phi, p_1, P_1) \land \dots \land \mathsf{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \mathsf{pos}(\phi)$ and for all i, i+j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$\operatorname{def}(\psi, \rho, P) := \left\{ \begin{array}{ll} (P \to \psi|_{\rho}) & \text{if } \operatorname{pol}(\psi, \rho) = 1 \\ (\psi|_{\rho} \to P) & \text{if } \operatorname{pol}(\psi, \rho) = -1 \\ (P \leftrightarrow \psi|_{\rho}) & \text{if } \operatorname{pol}(\psi, \rho) = 0 \end{array} \right.$$

Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

- (i) p is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or
- (ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ , $q \neq \epsilon$, and for all positions r with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and $pol(\phi,p)\in\{0,1\}$ or $\phi|_p$ is a disjunction or implication and $pol(\phi,p)\in\{0,-1\}$.

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and $pol(\phi,p)\in\{0,1\}$ or $\phi|_p$ is a conjunction and $pol(\phi,p)\in\{0,-1\}$.

Polarity Dependent Equivalence Elimination

ElimEquiv1 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \to \psi) \land (\psi \to \phi)]_p$ provided $\mathsf{pol}(\chi, p) \in \{0, 1\}$

ElimEquiv2
$$\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$$
 provided $\mathsf{pol}(\chi, \rho) = -1$

Extra \top , \bot Elimination Rules

ElimTB7
$$\chi[\phi \to \bot]_p \Rightarrow_{\mathsf{ACNF}} \chi[\neg \phi]_p$$

ElimTB8 $\chi[\bot \to \phi]_p \Rightarrow_{\mathsf{ACNF}} \chi[\top]_p$
ElimTB9 $\chi[\phi \to \top]_p \Rightarrow_{\mathsf{ACNF}} \chi[\top]_p$
ElimTB10 $\chi[\neg \phi]_p \Rightarrow_{\mathsf{ACNF}} \chi[\phi]_p$
ElimTB11 $\chi[\phi \leftrightarrow \bot]_p \Rightarrow_{\mathsf{ACNF}} \chi[\phi]_p$
ElimTB12 $\chi[\phi \leftrightarrow \top]_p \Rightarrow_{\mathsf{ACNF}} \chi[\phi]_p$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

```
1 Algorithm: 3 acnf(\phi)
   Input: A formula \phi.
   Output A formula \psi in CNF satisfiability preserving to \phi.
  whilerule (ElimTB1(\phi),...,ElimTB12(\phi)) do ;
3
   SimpleRenaming(\phi) on obvious positions;
  whilerule (ElimEquiv1(\phi),ElimEquiv2(\phi)) do ;
6
7 whilerule (ElimImp(\phi)) do ;
8
  whilerule (PushNeq1(\phi),...,PushNeq3(\phi)) do ;
10
  whilerule (PushDisj(\phi)) do ;
```