
158 CHAPTER 3. FIRST-ORDER LOGIC

Proof. (⇐) Assume that S′ is unsatisfiable. Then there exists at least one un-
satisfiable formula φ ∈ S′. Since S′ ⊆ S, S is also unsatisfiable.

(⇒) Let S be unsatisfiable and let N be the set of clauses obtained by Skolemiza-
tion and CNF transformation of the formulas in S. Clearly Res∗(N) is unsatis-
fiable. By Theorem 3.10.11, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for some
n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth≤ n. Choose
S′ as the subset of formulas in S so that the corresponding clauses contain the
assumptions (leaves) of B.

3.11 Orderings

Propositional superposition is based on an ordering on the propositional vari-
ables, Section 2.7. The ordering is total and well-founded. Basically, proposi-
tional variables correspond to ground atoms in first-order logic. This section
generalizes the ideas of the propositional superposition ordering to first-order
logic. In first-order logic the ordering has to also consider terms and variables
and operations on terms like the application of a substitution.

Definition 3.11.1 (Σ-Operation Compatible Relation). A binary relation
A over T (Σ,X) is called compatible with Σ-operations, if s A s′ implies
f(t1, . . . , s, . . . , tn) A f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ T (Σ,X).

Lemma 3.11.2 (Σ-Operation Compatible Relation). A relationA is compatible
with Σ-operations iff s A s′ implies t[s]p A t[s′]p for all s, s′, t ∈ T (Σ,X) and
p ∈ pos(t).

In the literature compatible with Σ-operations is sometimes also called com-
patible with contexts.

Definition 3.11.3 (Substitution Stable Relation, Rewrite Relation). A binary
relation A over T (Σ,X) is called stable under substitutions, if s A s′ implies
sσ A s′σ for all s, s′ ∈ T (Σ,X) and substitutions σ. A binary relation A is
called a rewrite relation, if it is compatible with Σ-operations and stable under
substitutions.

A rewrite ordering is then an ordering that is a rewrite relation.

Definition 3.11.4 (Subterm Ordering). The proper subterm ordering s > t is
defined by s > t iff s|p = t for some position p 6= ε of s.

Definition 3.11.5 (Simplification Ordering). A rewrite ordering � over
T (Σ,X) is called simplification ordering, if it enjoys the subterm property s � t
implies s > t for all s, t ∈ T (Σ,X) of the same sort.

Definition 3.11.6 (Lexicographical Path Ordering (LPO)). Let Σ = (S,Ω,Π)
be a signature and let � be a strict partial ordering on operator symbols in Ω,
called precedence. The lexicographical path ordering �lpo on T (Σ,X) is defined
as follows: if s, t are terms in TS(Σ,X) then s �lpo t iff

3.11. ORDERINGS 159

1. t = x ∈ X , x ∈ vars(s) and s 6= t or

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm) and

(a) si �lpo t for some i ∈ {1, . . . , n} or

(b) f � g and s �lpo tj for every j ∈ {1, . . . ,m} or

(c) f = g, s �lpo tj for every j ∈ {1, . . . ,m} and (s1, . . . , sn)(�lpo
)lex(t1, . . . , tm).

Theorem 3.11.7 (LPO Properties). 1. The LPO is a rewrite ordering.

2. LPO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �lpo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �lpo is well-founded.

Example 3.11.8. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With
respect to the precedence g � b � a the ordering on the ground terms is
g(g(a)) �lpo g(b) �lpo g(a) �lpo b �lpo a. The terms g(x) and g(y) are not
comparable. Note that the terms g(g(a)), g(b), g(a) are all instances of both
g(x) and g(y).

With respect to the precedence b � a � g the ordering on the ground terms
is g(b) �lpo b �lpo g(g(a)) �lpo g(a) �lpo a.

Definition 3.11.9 (The Knuth-Bendix Ordering). Let Σ = (S,Ω,Π) be a finite
signature, let � be a strict partial ordering (“precedence”) on Ω, let w : Ω∪X →
R+ be a weight function, so that the following admissibility condition is satisfied:
w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

Then, the weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively∑
w(t) =

∑
x∈vars(t)

w(x) ·#(x, t) +
∑
f∈Ω

w(f) ·#(f, t)

where #(a, t) is the number of occurrences of a in t.
The Knuth-Bendix ordering �kbo on T (Σ,X) induced by � and admissible

w is defined by: s �kbo t iff

1. #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

2. #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f � g, or

160 CHAPTER 3. FIRST-ORDER LOGIC

(b) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm)(�kbo
)lex(t1, . . . , tm).

Theorem 3.11.10 (KBO Properties). 1. The KBO is a rewrite ordering.

2. KBO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �kbo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �kbo is well-founded.

The KBO ordering can be extended to contain unary function symbols with
weight zero. This was motivated by completion of the group axioms, see Chap-
ter 4.

Definition 3.11.11 (The Knuth-Bendix Ordering Extended). The additional
requirements added to Definition 3.11.9 are

1. Extend w to w : Ω ∪ X → R+
0

2. If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

3. As a first case to the disjunction of 3.11.9-2.
(a’) t = x, s = fn(x) for some n ≥ 1

The LPO ordering as well as the KBO ordering can be extended to atoms in
a straightforward way. The precedence � is extended to Π. For LPO atoms are
then compared according to Definition 3.11.6-2. For KBO the weight function
w is also extended to atoms by giving predicates a non-zero positive weight and
then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in first-order logic,
an alternative to the above would be to first compare the predicate symbols and
let � decide the ordering. Only if the atoms share the same predicate symbol,
the argument terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.

3.12 First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.7 for first-order ground clauses.
The main difference is that the atom ordering is more complicated, see Sec-
tion 3.11. Let N be a possibly infinite set of ground clauses.

Definition 3.12.1 (Ground Clause Ordering). Let ≺ be a strict rewrite order-
ing total on ground terms and ground atoms. Then ≺ can be lifted to a total
ordering ≺L on literals by its multiset extension ≺mul where a positive literal

3.12. FIRST-ORDER GROUND SUPERPOSITION 161

P (t1, . . . , tn) is mapped to the multiset {P (t1, . . . , tn)} and a negative literal
¬P (t1, . . . , tn) to the multiset {P (t1, . . . , tn), P (t1, . . . , tn)}. The ordering ≺L
is further lifted to a total ordering on clauses ≺C by considering the multiset
extension of ≺L for clauses.

Proposition 3.12.2 (Properties of the Ground Clause Ordering). 1. The or-
derings on literals and clauses are total and well-founded.

2. Let C and D be clauses with P (t1, . . . , tn) = atom(max(C)),
Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the maximal lit-
eral in C.

(a) If Q(s1, . . . , sm) ≺L P (t1, . . . , tn) then D ≺C C.

(b) If P (t1, . . . , tn) = Q(s1, . . . , sm), P (t1, . . . , tn) occurs negatively in C
but only positively in D, then D ≺C C.

Eventually, as I did for propositional logic, I overload ≺ with ≺L and ≺C . So
if ≺ is applied to literals it denotes ≺L, if it is applied to clauses, it denotes ≺C .
Note that ≺ is a total ordering on literals and clauses as well. For superposition,
inferences are restricted to maximal literals with respect to ≺. For a clause set
N , I define N≺C = {D ∈ N | D ≺ C}.
Definition 3.12.3 (Abstract Redundancy). A ground clause C is redundant
with respect to a set of ground clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

C

Note that for finite N , and any C ∈ N redundancy N≺C |= C can
be decided but is as hard as testing unsatisfiability for a clause set
N . So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 3.12.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P (t1, . . . , tn) then ¬P (t1, . . . , tn)
is called selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected in a clause, any
superposition inference must be on the selected literal.

Definition 3.12.5 (Partial Model Construction). Given a clause set N and an
ordering ≺ we can construct a (partial) model NI for N inductively as follows:

NC :=
⋃
D≺C δD

δD :=

{P (t1, . . . , tn)} if D = D′ ∨ P (t1, . . . , tn), P (t1, . . . , tn) strictly maximal, no literal

selected in D and ND 6|= D

∅ otherwise

NI :=
⋃
C∈N δC

162 CHAPTER 3. FIRST-ORDER LOGIC

Clauses C with δC 6= ∅ are called productive.

Proposition 3.12.6 (Propertied of the Model Operator). Some properties of
the partial model construction.

1. For every D with (C ∨¬P (t1, . . . , tn)) ≺ D we have δD 6= {P (t1, . . . , tn)}.

2. If δC = {P (t1, . . . , tn)} then NC ∪ δC |= C.

3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D
and in particular NI |= D.

4. There is no clause C with P (t1, . . . , tn) ∨ P (t1, . . . , tn) ≺ C such that
δC = {P (t1, . . . , tn)}.

T

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N≺C is of set of clauses from N strictly
smaller than C with respect to ≺. NI , NC are Herbrand interpreta-

tions (see Proposition 3.5.3). NI is the overall (partial) model for N , whereas
NC is generated from all clauses from N strictly smaller than C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P (t1, . . . , tn) is strictly maximal in C1 ∨ P (t1, . . . , tn) (ii) no literal in
C1∨P (t1, . . . , tn) is selected (iii) ¬P (t1, . . . , tn) is maximal and no literal selected
in C2 ∨ ¬P (t1, . . . , tn), or ¬P (t1, . . . , tn) is selected in C2 ∨ ¬P (t1, . . . , tn)

Factoring (N] {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)} ∪ {C ∨ P (t1, . . . , tn)})
where (i) P (t1, . . . , tn) is maximal in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn) (ii) no
literal is selected in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.12.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

Examples for specific redundancy rules that can be efficiently decided are

Subsumption (N] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)

Condensation (N] {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})

3.12. FIRST-ORDER GROUND SUPERPOSITION 163

Subsumption
Resolution

(N] {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

Proposition 3.12.8 (Completeness of the Reduction Rules). All clauses re-
moved by Subsumption, Tautology Deletion, Condensation and Subsumption
Resolution are redundant with respect to the kept or added clauses.

Theorem 3.12.9 (Completeness). Let N be a, possibly countably infinite, set
of ground clauses. If N is saturated up to redundancy and ⊥ /∈ N then N is
satisfiable and NI |= N .

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI 6|= N . Then there is a minimal, with respect to ≺, clause
C∨L ∈ N such that NI 6|= C∨L and L is a selected literal in C∨L or no literal
in C ∨ L is selected and L is maximal. This clause must exist because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, N≺C∨L |= C ∨ L and
hence NI |= C ∨ L, because NI |= N≺C∨L, a contradiction.

I distinguish the case L is a positive and no literal selected in C ∨ L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P (t1, . . . , tn) for
some ground atom P (t1, . . . , tn). Now if P (t1, . . . , tn) is strictly maximal in
C ∨P (t1, . . . , tn) then actually δC∨P = {P (t1, . . . , tn)} and hence NI |= C ∨P ,
a contradiction. So P (t1, . . . , tn) is not strictly maximal. But then actually C ∨
P (t1, . . . , tn) has the form C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn) and Factoring derives
C ′1∨P (t1, . . . , tn) where (C ′1∨P (t1, . . . , tn)) ≺ (C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn)).
Now C ′1 ∨ P (t1, . . . , tn) is not redundant, strictly smaller than C ∨ L, we have
C ′1∨P (t1, . . . , tn) ∈ N and NI 6|= C ′1∨P (t1, . . . , tn), a contradiction against the
choice that C ∨ L is minimal.

Secondly, let us assume L is negative, i.e., L = ¬P (t1, . . . , tn) for some
ground atom P (t1, . . . , tn). Then, since NI 6|= C ∨ ¬P (t1, . . . , tn) we know
P (t1, . . . , tn) ∈ NI . So there is a clause D ∨ P (t1, . . . , tn) ∈ N where
δD∨P (t1,...,tn) = {P (t1, . . . , tn)} and P (t1, . . . , tn) is strictly maximal in D ∨
P (t1, . . . , tn) and (D ∨ P (t1, . . . , tn)) ≺ (C ∨ ¬P (t1, . . . , tn)). So Superposition
Left derives C ∨ D where (C ∨ D) ≺ (C ∨ ¬P (t1, . . . , tn)). The derived clause
C ∨ D cannot be redundant, because for otherwise either N≺D∨P (t1,...,tn) |=
D ∨ P (t1, . . . , tn) or N≺C∨¬P (t1,...,tn) |= C ∨ ¬P (t1, . . . , tn). So C ∨D ∈ N and
NI 6|= C ∨D, a contradiction against the choice that C ∨L is the minimal false
clause.

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.12.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N ′ ⊆ N such that N ′ is unsatisfiable.

164 CHAPTER 3. FIRST-ORDER LOGIC

Proof. If N is unsatisfiable, saturation via superposition generates ⊥. So there
is an i such that N ⇒i

SUP N ′ and ⊥ ∈ N ′. The clause ⊥ is the result of at
most i-many superposition inferences, reductions on clauses {C1, . . . , Cn} ⊆ N .
Superposition is sound, so {C1, . . . , Cn} is a finite, unsatisfiable subset of N .

Corollary 3.12.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of N are satisfiable.

Theorem 3.12.12 (Soundness and Completeness of Ground Superposition). A
first-order Σ-sentence φ is valid iff there exists a ground superposition refutation
for grd(Σ, cnf(¬φ)).

Proof. A first-order sentence φ is valid iff ¬φ is unsatisfiable iff acnf(¬φ) is unsat-
isfiable iff grd(Σ, cnf(¬φ)) is unsatisfiable iff superposition provides a refutation
of grd(Σ, cnf(¬φ)).

Theorem 3.12.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order Σ-sentence φ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate grd(Σ, acnf(¬φ)) and perform superposition in-
ference steps. The enumeration can, e.g., be done by considering Herbrand terms
of increasing size.

Example 3.12.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P � Q �
g � f � c � b � a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a ∗.

1. ¬P (f(c))∗ ∨ ¬P (f(c))∗ ∨Q(b) (Input)
2. P (f(c))∗ ∨Q(b) (Input)
3. ¬P (g(b, c))∗ ∨ ¬Q(b) (Input)
4. P (g(b, c))∗ (Input)
5. ¬P (f(c))∗ ∨Q(b) (Cond(1))
6. Q(b)∗ ∨Q(b)∗ (Sup(5, 2)))
7. Q(b)∗ (Fact(6))
8. ¬Q(b)∗ (Sup(3, 4))

10. ⊥ (Sup(8, 7))

Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.12.15 (Craig Theorem [18]). Let φ and ψ be two propositional
(first-order ground) formulas so that φ |= ψ. Then there exists a formula χ
(called the interpolant for φ |= ψ), so that χ contains only propositional variables
(first-order signature symbols) occurring both in φ and in ψ so that φ |= χ and
χ |= ψ.

3.13. FIRST-ORDER SUPERPOSITION 165

Proof. Translate φ and ¬ψ into CNF. let N and M , respectively, denote the
resulting clause set. Choose an atom ordering � for which the propositional
variables that occur in φ but not in ψ are maximal. Saturate N into N∗ w.r.t.
Sup�sel with an empty selection function sel. Then saturate N∗∪M w.r.t. Sup�sel
to derive ⊥. As N∗ is already saturated, due to the ordering restrictions only
inferences need to be considered where premises, if they are from N∗, only
contain symbols that also occur in ψ. The conjunction of these premises is an
interpolant χ. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization.

3.13 First-Order Superposition

Now the result for ground superposition are lifted to superposition on first-order
clauses with variables, still without equality. The completeness proof of ground
superposition above talks about (strictly) maximal literals of ground clauses.
The non-ground calculus considers those literals that correspond to (strictly)
maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.13.1 (Maximal Literal). A literal L is called maximal in a clause
C if and only if there exists a grounding substitution σ so that Lσ is maximal
in Cσ, i.e., there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called strictly
maximal if there is no different L′ ∈ C such that Lσ � L′σ.

Note that the orderings KBO and LPO cannot be total on atoms with vari-
ables, because they are stable under substitutions. Therefore, maximality can
also be defined on the basis of absence of greater literals. A literal L is called
maximal in a clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P (t1, . . . , tn)σ is strictly maximal in (C1 ∨ P (t1, . . . , tn))σ (ii) no
literal in C1 ∨ P (t1, . . . , tn) is selected (iii) ¬P (s1, . . . , sn)σ is maximal and
no literal selected in (C2 ∨ ¬P (s1, . . . , sn))σ, or ¬P (s1, . . . , sn) is selected in
(C2 ∨ ¬P (s1, . . . , sn))σ (iv) σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn)

Factoring (N] {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)} ∪ {(C ∨ P (t1, . . . , tn))σ})
where (i) P (t1, . . . , tn)σ is maximal in (C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn))σ
(ii) no literal is selected in C ∨P (t1, . . . , tn)∨P (s1, . . . , sn) (iii) σ is the mgu of
P (t1, . . . , tn) and P (s1, . . . , sn)

