
Propositional Logic Modulo Theories 363

T -Conflict. This is because in this case, Conflict would be applicable. Analo-
gous to the rules Backtrack and T -Propagate, it would be possible to define
T -Conflict such that L is immediately propagated, i.e., the resulting trail
would be M1L instead of M1.

Note that the clause C ∨ L used to justify T -Propagate as well as the
clause C ∨ L used for T -Conflict and the clause C added by T -Learn are
tautologies in the theory. The calculus would be complete even without the
rules T -Propagate, T -Atom and T -Learn. In addition to the normal CDCL
rules, only T -Success to get from a model M of N to a final state and T -
Conflict to reject a T -unsatisfiable model M are needed. The remaining rules
are just for efficiency. There is a tradeoff between at any time checking M
with respect to the theory and thus avoiding T -Conflicts, called eager theory
consideration, and computing with respect to the boolean structure and thus
taking into account eventual extra T -Conflict, called lazy theory consideration.
Similarly, it is not obvious whether the applicability of T -Conflict should be
checked eagerly because this might be expensive.

The minimal requirement for T is a decision procedure that checks for a
conjunction of literals whether it is satisfiable, and that, if not, ideally provides
a minimal unsatisfiable subset.

Example 7.2.2. This example illustrates different strategies as to when to
consider the theory. Consider the clause set N = {P,Q,R ∨ S} with V =
{P,Q,R, S} and atr− 1(P ) = (a ≥ 0), atr− 1(Q) = (a + b < 0), atr− 1(R) =
(b > 0), atr− 1(S) = (b = 0). A run using only the rules used in the complete-
ness proof [7.2.8], serving as an example for lazy theory consideration, might
look as follows.

(V ; ε;N ; ∅; 0;>)

⇒Propagate
CDCL(T) (V ;PP ;N ; ∅; 0;>)

⇒Propagate
CDCL(T) (V ;PPQQ;N ; ∅; 0;>)

⇒Decide
CDCL(T) (V ;PPQQR1;N ; ∅; 1;>)

⇒T -Conflict
CDCL(T) (V ;PPQQ;N ; {C := ¬P ∨ ¬Q ∨ ¬R}; 0;>)

⇒Propagate
CDCL(T) (V ;PPQQ¬RC ;N ; {C}; 0;>)

⇒Propagate
CDCL(T) (V ;PPQQ¬RCSS∨R;N ; {C}; 0;>)

⇒T -Conflict
CDCL(T) (V ;PPQQ¬RC ;N ; {C,D := ¬P ∨ ¬Q ∨ ¬S}; 0;>)

⇒Propagate
CDCL(T) (V ;PPQQ¬RCSS∨R;N ; {C,D}; 0;>)

⇒Conflict
CDCL(T) (V ;PPQQ¬RCSS∨R;N ; {C,D}; 0;D = ¬P ∨ ¬Q ∨ ¬S)

From this point on, the clause set will be refuted by four applications of the
rule Resolve. In the second application of T -Conflict, as mentioned earlier,
SS∨R could have been left on the trail if the rule was defined differently.



364 Automated Reasoning – Some Basics January 28, 2025

Here, it was removed by T -Conflict and then immediately added again by
Propagate.

An alternative run with more eager theory consideration on the same clause
set could look as follows.

(V ; ε;N ; ∅; 0;>)

⇒Propagate
CDCL(T) (V ;PP ;N ; ∅; 0;>)

⇒Propagate
CDCL(T) (V ;PPQQ;N ; ∅; 0;>)

⇒T -Atom
CDCL(T) (V ′ := V ∪ {T : atr− 1(T ) = (b < 0)};PPQQ;N ; ∅; 0;>)

⇒T -Propagate
CDCL(T) (V ′;PPQQTC ;N ; {C := ¬P ∨ ¬Q ∨ T}; 0;>)

⇒T -Propagate
CDCL(T) (V ′;PPQQTC¬RD;N ; {C,D := ¬T ∨ ¬R}; 0;>)

⇒T -Propagate
CDCL(T) (V ′;PPQQTC¬RD¬SE ;N ; {C,D,E := ¬T ∨ ¬S}; 0;>)

⇒Conflict
CDCL(T) (V ′;PPQQTC¬RD¬SE ;N ; {C,D,E}; 0;R ∨ S)

From this point on, the clause set will be refuted by five applications of the
rule Resolve. This run could have been obtained by feeding the trail into
the theory solver literal by literal. After adding P and Q, the theory solver
might have deduced b < 0, which was added to the CDCL(T) state as the
propositional variable T using T -Atom and T -Propagate. Given the atoms R
and S already present in the CDCL(T) state, the theory solver might have
found that ¬T ∨¬R and ¬T ∨¬S, two facts that were added to the CDCL(T)
state using T -Propagate.

Note that the initial clause set N is not modified by any rule, so we can
assume that N is constant in any run. For all other objects occurring in the
statements and proofs of the following lemmas and theorems, we use a nota-
tion like Ĉ to refer to variables introduced in the respective lemma, theorem
or proof. Variables without a hat like C refer to the variables used in the
definitions of the rules.

Lemma 7.2.3 (Invariants). If (V̂ ; ε;N ; ∅; 0;>)⇒∗CDCL(T) (V̂ ′; M̂ ;N ; Û ; k̂; D̂),
then the following hold:

1. there are no literals L̂, K̂ such that M̂ = M̂1L̂M̂2K̂M̂3 and atom(L̂) =
atom(K̂),

2. k̂ is the highest level of any literal L̂ in M̂ , or k̂ = 0 if M̂ = ε,

3. and for all atoms Â ∈ atom(N ∪ Û ∪ M̂ ∪ D̂), Â ∈ V̂ .

Proof. All properties are shown by induction on the length of the derivation.
For the start state, all properties obviously hold.

1. We only have to show something if the last applied rule was Backtrack,


