
Chapter 7

Propositional Logic Modulo Theories

In Chapter 6 I have studied a number of decision procedures for conjunctions
of literals of some specific first-order theory or fragment. In this chapter the
decision procedures are extended in two different ways. Firstly, by considering
conjunctions of literals over several first-order theories. The respective proce-
dure is the Nelson-Oppen combination procedure for theories [71], Section 7.1.
Secondly, I lift the procedure from conjunctions of literals to arbitrary boolean
combinations of literals. The respective procedure is CDCL(T), Section 7.2.

7.1 Nelson-Oppen Combination

Here I discuss a basic variant of the Nelson-Oppen [71] (NO) combination
procedure for two theories T1 and T2 (see Definition 3.17.1) over two respective
signatures Σ1 and Σ2 that do not share any function, constant, or predicate
symbols, but may share sorts. The idea of the procedure is to reduce satisfia-
bility of a quantifier-free formula over Σ1 ∪Σ2 to satisfiability of two separate
formulas over Σ1 and Σ2, respectively.

The underlying semantics is that a quantifier-free formula φ over Σ1 ∪Σ2

is satisfiable if there exists a Σ1 ∪Σ2 algebra A such that A(β) |= φ for some
assignment β, and A|Σ1

is isomorphic to a model in T1 and A|Σ2
is isomorphic

to a model in T2. Here A|Σ denotes the restriction of A to the symbols in Σ.
With appropriate restrictions, see below, the problem of testing satisfiability
of φ can actually be reduced to solving finitely many separate satisfiability
problems in Σ1 and Σ2, respectively.

Note that both theories share the equality symbol, because it is part of
the first-order operator language. It is needed to separate the theories by the
introduction of extra variables, called parameters and to transfer results from
reasoning in T1 to T2 and vice versa.

For example, consider a combination of T1 = {ALRA }, Section 6.2,
with EUF, T2 = {>}, Section 6.1 with signatures Σ1 = ΣLA and Σ2 =
({S,LA}, {g, a, b, c}, ∅) and ground formula

φ = g(b) > 5 ∧ g(c) < 5 ∧ g(c) ≈ a ∧ g(b) ≈ a.

Note that for LRA I fixed the standard algebra, whereas for EUF I fixed
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a set with one axiom, actually >. So for EUF all first-order Σ2-algebras are
considered. For both theories Chapter 6 contains decision procedures, however,
φ contains mixed atoms such as g(b) > 5 that cannot be processed by the
respective decision procedures. So the first step is purification where all mixed
atoms are translated into pure atoms of Σ1, Σ2, respectively.

φ = xLA > 5 ∧ yLA < 5 ∧ g(c) ≈ a ∧ g(b) ≈ a ∧ g(b) ≈ xLA ∧ g(c) ≈ yLA

Note parameters, e.g., xLA, yLA, are always implicitly existentially quantified.
Now the separated formulas considered for both theories are

φ1 = xLA > 5 ∧ yLA < 5
φ2 = g(c) ≈ a ∧ g(b) ≈ a ∧ g(b) ≈ xLA ∧ g(c) ≈ yLA

Any LRA procedure for φ1 immediately returns true. Congruence closure ap-
plied to φ2 generates xLA ≈ yLA for the two existentially quantified variables.
Transferring this equation to the LRA procedure on φ1 ∧ xLA = yLA results
in false. Therefore, φ is not satisfiable.

The example exhibits another property required by the respective theories,
they have to be convex : if a disjunction of equations is the consequence of the
theory, actually one equation holds. This property holds for LRA but not for
LIA. For example,

1 < xLIA ∧ xLIA < 4 |=LIA xLIA = 2 ∨ xLIA = 3

but none of the two single disjuncts is a consequence. Therefore, the Nelson-
Oppen combination procedure between LIA and EUF will not be able to detect
unsatisfiability of the already purified formulas

φ1 = 1 < xLIA ∧ xLIA < 4 ∧ 1 < yLIA ∧ yLIA < 4 ∧ 1 < zLIA ∧ zLIA < 4
φ2 =xLIA 6≈ yLIA ∧ yLIA 6≈ zLIA ∧ zLIA 6≈ xLIA.

Definition 7.1.1 (Convex Theory). A theory T is convex if for a conjunction
φ of literals with φ |=T x1 ≈ y1 ∨ . . . ∨ xn ≈ yn then φ |=T xk ≈ yk for some
k.

Another property needed for the Nelson-Oppen procedure to work is that
the theory models always include models with an infinite domain. Consider
the two theories

T1 = {∀x, y(x ≈ a ∨ x ≈ b)}

and
T2 = {∃x.(x 6≈ a ∧ x 6≈ b ∧ a 6≈ b)}

that do not share any signature symbols. Models of T1 have at most two
elements, models of T2 at least three. So the conjunction (T1 ∪ T2) is already
unsatisfiable. In order to ensure that different models for the respective theory
can be combined, the Nelson-Oppen procedure requires the existence of models
with infinite cardinality.
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Definition 7.1.2 (Stably-Infinite Theory). A theory T is stably-infinite if for
every quantifier-free formula φ, if T |= φ, then then there exists also a model
A of infinite cardinality, such that A |=T φ

Definition 7.1.3 (Nelson-Oppen Basic Restrictions). Let T1 and T2 be two
theories. Then the Nelson-Oppen Basic Restrictions are:

1. There are decision procedures for T1 and T2.

2. Each decision procedure returns a complete set of variable identities as
consequence of a formula.

3. Σ1 ∩ Σ2 = ∅ except for common sorts.

4. Both theories are convex.

5. T1 and T2 are stably-infinite.

Actually, restriction 7.1.3-2 is not needed, because a given finite quantifier-
free formula φ over Σ1∪Σ2 contains only finitely many different variables. Now
instead of putting the burden to identify variables on the decision procedure,
all potential variable identifications can be guessed and tested afterwards.
The disadvantage of this approach is, of course, that there are exponentially
many identifications with respect to a fixed number of variables. Therefore,
assuming 7.1.3-2 results in a more efficient procedure and is also supported
by many procedures from Section 6. Still I will also formulate the procedure
with respect to guessing the identifications, Definition 7.1.6, Proposition 7.1.7,
because it enables a more elegant proof of completeness.

Restriction 7.1.3-5 can be further relaxed to assume that the domains of
all shared sorts of all models are either infinite or have the same number of
elements.

The Nelson-Oppen restrictions and procedure can be extended from two
so several theories in the obvious way.

Example 7.1.4. T1 may be LA with the standard LA model over Q as the
only model in C1 and T2 is EUF over Σ2 = {a, g, f}, where a is a constant, g
has arity 1 and f arity 2, with all respective term-generated models in C2.

The goal of the Nelson-Oppen combination procedure is now to decide the
satisfiability of a quantifier-free formula φ over Σ1 ∪ Σ2. The variables are
implicitly existentially quantified. It actually suffices to consider conjunctions
of atoms, because for boolean combinations CDCL(NO), Section 7.2, does the
job. The first step of the procedure is to apply purification, i.e., transform the
formula φ into a satisfiability equivalent formula φ′ such that no term of an
atom in φ′ contains symbols from Σ1 and Σ2. This can always be achieved by
the introduction of fresh variables.

Example 7.1.5. Consider the atom f(x1, 0) ≥ x3 with respect to the theories
of Example 7.1.4. The satisfiability preserving purified formula for f(x1, 0) ≥
x3 is x4 ≥ x3 ∧ x4 ≈ f(x1, x5) ∧ x5 ≈ 0.
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Let N be a set of Σ1 ∪ Σ2 literals interpreted as the conjunction. Then
purification amounts to the exhaustive application of the following rule.

ToDo: differentiate between preprocessing (purify) and the nelson-oppen al-
gorithm, introduce sharing of common subterms, see also congruence closure

Purify N ] {L[t[s]i]p} ⇒NO N ] {L[t[z]i]p, z ≈ s}
if t = f(t1, . . . , tn), s = h(s1, . . . , sm), the function symbols f and h are from
different signatures, 1 ≤ i ≤ n, (i.e., ti = s) and z is a fresh variable of
appropriate sort

After exhaustive application of Purify to any set N of Σ1 ∪Σ2 literals the
set N can actually be split into two sets N = N1 ∪ N2 where N1 is build
over Σ1, N2 is build over Σ2 and N1 and N2 only share variables. Variable
equations are distributed in both N1 and N2. Now a Nelson-Oppen problem
state is a five tuple (N1, E1, N2, E2, s) with s ∈ {>,⊥, fail}, the sets E1 and E2

contain variable equations, and N1, N2 literals over the respective signatures,
where

(N1; ∅;N2; ∅;⊥) is the start state for some purified set of atoms N =
N1 ∪ N2 where the Ni are built from the respective
signatures only

(N1;E1;N2;E2; fail) is a final state, where N1∪N2∪E1∪E2 is unsatisfiable
(N1;E1;N2;E2;⊥) is an intermediate state, where N1 ∪E2 and N2 ∪E1

have to be checked for satisfiability
(N1; ∅;N2; ∅;>) is a final state, where N1 ∪N2 is satisfiable

Solve (N1;E1;N2;E2;⊥) ⇒NO (N ′1;E′1;N ′2;E′2;⊥)

if N ′1 = N1∪E1∪E2 and N ′2 = N2∪E1∪E2 are both Ti-satisfiable, respectively,
E′1 are all new variable equations derivable from N ′1, E′2 are all new variable
equations derivable from N ′2 and E′1 ∪ E′2 6= ∅

Success (N1;E1;N2;E2;⊥) ⇒NO (N ′1; ∅;N ′2; ∅;>)

if N ′1 = N1∪E1∪E2 and N ′2 = N2∪E1∪E2 are both Ti-satisfiable, respectively,
E′1 are all new variable equations derivable from N ′1, E′2 are all new variable
equations derivable from N ′2 and E′1 ∪ E′2 = ∅

Fail (N1;E1;N2;E2;⊥) ⇒NO (N1;E1;N2;E2; fail)

if N ′1 = N1 ∪ E1 ∪ E2 or N ′2 = N2 ∪ E1 ∪ E2 is Ti-unsatisfiable, respectively
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IIn the definition of the rules all derived equalities between variables
are added to N1 and N2 and the decision procedures are always
called to test satisfiability and produce new variable equalities. In an imple-
mentation this is not needed, a decision procedure needs only to be called if
a new equality was derived by the other decision procedure.

The EUF decision procedure can easily be extended to explicitly produce
derived variable equalities. For the suggested LA procedures (Fourier-Motzkin,
Simplex, Virtual Substitution) this requires some extra work.

As a first example, consider the formula over LA and EUF

f(x1, 0) ≥ x3 ∧ f(x1, 0) ≤ x3

which becomes after purification

x4 ≥ x3 ∧ f(x1, x5) ≈ x4 ∧ x5 ≈ 0 ∧ x6 ≤ x3 ∧ f(x1, x5) ≈ x6

and the respective NO derivation is

({x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, ∅, {f(x1, x5) ≈ x4, f(x1, x5) ≈ x6}, ∅,⊥)
⇒Solve

NO ({x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, ∅,
{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6}, {x4 ≈ x6},⊥)

⇒Solve
NO ({x4 ≈ x6, x4 ≥ x3, x5 ≈ 0, x6 ≤ x3}, {x4 ≈ x3, x6 ≈ x3},

{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6, x4 ≈ x6}, ∅,⊥)
⇒Success

NO ({x4 ≈ x6, x4 ≥ x3, x5 ≈ 0, x6 ≤ x3, x4 ≈ x3, x6 ≈ x3}, ∅,
{f(x1, x5) ≈ x4, f(x1, x5) ≈ x6, x4 ≈ x6, x4 ≈ x3, x6 ≈ x3}, ∅,>)

I

Note that the Purify rule was applied in the above example in a
slightly different way where the variable x5 is shared for both oc-
currences of the term f(x1, 0). For an actual implementation, it is
desirable to share as many subterms as possible that way.

As a second example, consider the formula over LA and EUF

x− y ≈ 0 ∧ g(x) 6≈ g(y)

which is already purified and the respective NO derivation is

({x− y ≈ 0}, ∅, {g(x) 6≈ g(y)}, ∅,⊥)
⇒Solve

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) 6≈ g(y)}, ∅,⊥)
⇒Fail

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) 6≈ g(y)}, ∅, fail)

For EUF variable identities are anyway computed by the congruence clo-
sure algorithm when computing the equivalence classes by generating a ter-
minating and confluent R (see Section 6.1). However, for LA and, e.g., the
simplex algorithm (see Section 6.2.2), it only comes at additional cost to iden-
tify variable identities.
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Definition 7.1.6 (Arrangement). Given a (finite) set of parameters X, an
arrangement A over X is a (finite) set of equalities and inequalities over X
such that for all x1, x2 ∈ X either x1 ≈ x2 ∈ A or x1 6≈ x2 ∈ A.

Proposition 7.1.7 (Nelson-Oppen modulo Arrangement). Let T1 and T2 be
two theories satisfying the restrictions of Definition 7.1.3 except for restric-
tion 2. Let φ be a conjunction of literals over Σ1 ∪Σ2. Let N1 and N2 be the
purified literal sets out of φ. Then φ is satisfiable iff there is an arrangement
A over vars(φ) such that N1 ∪A is T1-satisfiable and N2 ∪A is T2-satisfiable.

Note that it is not sufficient to consider just equalities for some arrange-
ment, because in one theory these equalities might imply further equalities
which are then not transferred into the other theory.

Theorem 7.1.8 (Nelson-Oppen is Sound, Complete and Terminating). Let
T1, T2 be two theories satisfying the Nelson-Oppen basic restrictions. Let φ be
a conjunction of literals over Σ1 ∪Σ2 and N1, N2 be the result of purifying φ.
(i) All sequences (N1; ∅;N2; ∅;⊥)⇒∗NO . . . are finite.
Let (N1; ∅;N2; ∅;⊥)⇒∗NO (N1;E1;N2;E2; s) be a derivation with finite state
(N1;E1;N2;E2; s),
(ii) If s = fail then φ is unsatisfiable in T1 ∪ T2.
(iii) If s = > then φ is satisfiable in T1 ∪ T2.

Proof. (i) The relation ⇒NO terminates as soon as no new equations are
derived or one combination of formulas and equations is unsatisfiable. There
are only finitely many different equations over the common variables of N1, N2,
so ⇒NO terminates.

(ii) Clearly purification preservers satisfiability. The Solve rule only adds
logical consequences of the respective theory. Hence, if rule Fail is applicable
then clearly N1∪E1 (N2∪E2) is unsatisfiable, hence φ is not satisfiable. This
proves soundness.

(iii) Completeness is more complicated. I show it for the Nelson-Oppen
formulation modulo arrangements, Proposition 7.1.7, completeness of ⇒NO

is then implied by convexity of T1, T2. Assume that the theories T1, T2 are
given by possibly countably infinite sets of first-order clauses, we also de-
note by T1, T2. Then T1 ∪ T2 ∪ {φ} is unsatisfiable iff T1 ∪ T2 ∪ N1 ∪ N2 is
unsatisfiable iff (T1 ∧ N1) → (¬T2 ∨ ¬N2) is valid. By Craig’s interpolation
Theorem 3.12.15, there exists a finite set of clauses H such that T1 ∧N1 → H
and H → (¬T2 ∨¬N2), or, reformulated, (H ∧ T2)→ ¬N2. The symbols used
in H are common non-variable symbols of N1 and N2. So H is a conjunction
of clauses over equations with universally quantified variables yj and shared
parameters xi. It has the form

∧∨
[¬]ti ≈ tj of equational literals where the

ti, tj are universally quantified variables yj or parameters xi. An equation
yi ≈ yj between universally quantified variables is true iff i = j and therefore
needs not to be considered. Now this CNF can be transformed into a DNF
yielding

∨∧
ti ≈ tj , in summary, (T1 ∧N1)→ (

∨∧
ti ≈ tj). Next, I prove by
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contradiction that actually one conjunct
∧
ti ≈ tj is implied and no ti, tj is a

universally quantified variable. Assume this is not the case, i.e., in each of the
conjuncts there are equation(s) [¬]xi ≈ ai needed to establish the overall truth
of (T1 ∧ N1) → (

∨∧
ti ≈ tj). Then (T1 ∧ N1) → (

∨
xi ≈ ai), where I filter

only the positive equations out of the conjuncts. But the formula (
∨
xi ≈ ai)

implies a finite model, contradicting that T1 is stably infinite. Therefore, if
T1 ∪ T2 ∪ N1 ∪ N2 is unsatisfiable, then there is an arrangement E of the
parameters such that (T1 ∧N1 ∧ E) or (T2 ∧N2 ∧ E) is unsatisfiable.

Exercises

(7.1) Apply Nelson-Oppen to the LRA, EUF combination and the formula

f(x1, 0) ≥ x3 ∧ f(x2, 0) ≤ x3 ∧ x1 ≈ x2 ∧ x3 − f(x1, 0) ≥ 1

where I assume appropriate sorts for the variables and function declarations.

(7.2) Apply Nelson-Oppen to the LRA, EUF combination and the formula

f(f(a)) ≈ b, f(a) ≈ g(b), d ≥ 6, b < c+ 3, g(b) ≈ c, f(c) ≈ d, c ≥ 2

(7.3) Apply Nelson-Oppen to the LRA, EUF combination and the formula

g(g(x)− g(y)) ≈ z ∧ f(0) > z + 2 ∧ x ≈ y

where I assume appropriate sorts for the variables and function declarations.

(7.4) Apply Nelson-Oppen to the LRA, EUF combination and the formula

x2 ≥ x1 ∧ x1 − x3 ≥ x2 ∧ g(f(x1)− f(x2)) 6≈ g(x3) ∧ x3 ≥ 0

where I assume appropriate sorts for the variables and function declarations.

(7.5)∗ Let Σ = (Ω, ∅) be a signature without predicate symbols (except built-
in equality). For two Σ-algebras A and B, we define the product A×B as the
Σ-algebra whose universe is the cartesian product of the universes of A and
B, and where fA×B((a1, b1), . . . , (an, bn)) = (fA(a1, . . . , an), fB(b1, . . . , bn)).
A Σ-theory T is called closed under products, if the product of any two models
of T is again a model of T .
Prove: If T is closed under products, then it is convex.

(7.6)∗ Prove: If the axioms of the Σ-theory T are universally quantified equa-
tional Horn clauses (that is, clauses where all atoms are equations and at most
one of the literals is positive), then T is convex. You may use the previous
exercise.


