
Decidable Logics 347

(6.21) Prove or provide a counterexample: Consider the two inequations x >
y + 2 and 2x < 4y + 3 and the inequation 2y + 4 < 4y + 3 obtained via
elimination of x. Then all integer solutions of 2y+ 4 < 4y+ 3 can be extended
to integer solutions for x.

(6.22)∗ Prove a | dx+ c iff a |x+ c ∧ d |x. ToDo: This does not make sense

6.2.5 Branch and Bound for LIA

Let N be a conjunction of linear arithmetic constraints over {≤, <, 6≈
, >,≥} with variables x1, . . . , xn where all coefficients are integers. Then
LRA |= ∃x1, . . . , xn.N is typically efficiently decidable by the simplex algo-
rithm, see also Section 6.2.2, whereas LIA |= ∃x1, . . . , xn.N is an NP-complete
problem [74]. ToDo: other refs papa and poly simplex

Membership in NP results from the observation that the variables of N can be
a priori bounded. Let a be the maximal absolute value of a coefficient inN then
LIA |= ∃x1, . . . , xn.N iff there is an assignment β such that LIA(β) |= N and
for all variables xi, −n(|N |a)2|N |+1 ≤ β(xi) ≤ n(|N |a)2|N |+1. Now guessing an
assignment β and checking whether it satisfies N can be done in polynomial
time, because the potential values for the xi can be encoded logarithmically.

Lemma 6.2.14 (LIA Satisfiability is NP-Complete). Let N be a conjunction
of linear arithmetic constraints then LIA |= ∃x1, . . . , xn.N is NP-complete.

Proof. Membership in NP follows from the singly exponential bounds for each
variable for a satisfying assignment.

On the other hand NP-hardness follows from a coding of 3-SAT, Sec-
tion 2.14. Each propositional variable becomes an integer variable. The integer
variables are a priori bounded to the values 0, 1. Clauses are translated into
inequations. For example the clause set

N = {¬P ∨Q ∨R, P ∨ ¬Q ∨R}

is translated into the inequations

NLIA = {(1− xP) + xQ + xR ≥ 1, xP + (1− xQ) + xR ≥ 1,
0 ≤ xP , xQ, xR ≤ 1}

where the latter inequation on xP , xQ, xR is an abbreviation for the respective
single inequations. It is not difficult to check that N is satisfiable iff NLIA has
a solution.

So a naive procedure for checking LIA |= ∃x1, . . . , xn.N could simply test
all values for the xi. Such a procedure can already be significantly improved by
the following observation: if LIA |= ∃x1, . . . , xn.N then LRA |= ∃x1, . . . , xn.N .
As a consequence, if there is no rational solution, i.e., LRA 6|= ∃x1, . . . , xn.N ,

348 Automated Reasoning – Some Basics December 2, 2024

then there is also no integer solution, i.e., LIA 6|= ∃x1, . . . , xn.N . Furthermore,
if by accident a rational solution β, LRA(β) |= N is also an integer solution,
it can be reused. If β assigns to some variable xi a non-integer value d, then
N has an integer solution iff N ∧ xi ≥ dde or N ∧ xi ≤ bdc. Both problems
rule out the solution β(xi) = d, so they can again be tested by relaxation with
respect to LRA. Putting all this together results in the classical branch and
bound approach to LIA solving.

The simple LIA branch and bound calculus is very similar to DPLL, Sec-
tion 2.8. A LIABB problem state is a pair (M ;N) where M a sequence of
partly annotated simple bounds xi ≤ d, d ∈ Z, and N is a set of inequations,
vars(N) = {x1, . . . , xn}. Let a be the maximal absolute value of a coefficient in
N , c = n(|N |a)2|N |+1, then the following LIABB states can be distinguished:

(B;N) is the start state for some set N of inequations, where
B = −c ≤ x1, x1 ≤ c, . . . ,−c ≤ xn, xn ≤ c.

(M ;N) is a final state, if there is a unique β, LIA(β) |= M∧N
(M ;N) is a final state, if there is no β, LIA(β) |= N

Given a state (M,N), a simple bound x ◦ d, d ∈ Z, is called undefined in
M , if there exists a valuation β, LIA(β) |= M and LIA(β) 6|= x ◦ d. The rules
Propagate, Decide, and Backtrack constitute the LIABB calculus.

Propagate (M ;N) ⇒LIABB (M,x ◦ d;N)

provided there is a valuation β, LRA(β) |= M ∧N , LIA |= ∀x1, . . . , xn.[(M ∧
N)→ x ◦ d], d ∈ Z, and x ◦ d is undefined in M

Decide (M ;N) ⇒LIABB (M,x ◦ ed;N)

provided x ◦ e is undefined in M , LRA(β) |= M ∧ N , β(x) = d and either
(◦ =≤ and e = bdc) or (◦ =≥ and e = bdc+ 1)

Backtrack (M1, x ◦1 ed1,M2;N) ⇒LIABB (M1, x ◦2 e2;N)

provided there is no valuation β, LRA(β) |= (M1∧x◦1 e1∧M2∧N) and there
is no y ◦′ e′d′ in M2 and if ◦1 =≤, then ◦2 =≥ and e2 = bdc + 1; if ◦1 =≥,
then ◦2 =≤ and e2 = bdc

The notions of a trail, a propagated literal, or a decided literal carry over
from DPLL. Similar to DPLL, the rules Propagate and Decide can only be
applied finitely often.

Note that rule Decide can be restricted to decisions on rationals that are
not integeters, i.e., the condition d 6∈ Z can be added without changing any
properties of the calculus. In case β is actually an integer solution the re-
striction definitely improves the performance. In case β contains non-integer
assignemtns it is a heuristic.

Decidable Logics 349

Lemma 6.2.15 (LIABB Propagate and Decide). Let (B,N)⇒∗LIABB (M,N)
be a LIABB derivation. Then from (M,N) there only finitely many applica-
tions of Propagate and Decide possible.

Proof. For each variable xi there is an integer upper and lower bound in M . So
there are only finitely many different β with LIA(β) |= M . Both Propagate and
Decide rule out at least one assignment β. If M ∧N becomes LRA unsolvable,
none of the rules is applicable anymore. If M has no LIA solution, none the
rules is applicable anymore.

Theorem 6.2.16 (LIABB Terminates). Any derivation (B,N) ⇒∗LIABB . . .
is finite.

Similar to DPLL, Propagate is not needed for soundness or completeness.
In contrast to DPLL, it is not a priori wise to give Propagate priority over
Decide. Consider the following set of linear inequations

N = {2x1 − x2 ≤ 0, x2 − x1 ≤ 0},

where n = |N | = a = 2, hence c = 2048. So the start state is (B;N),
where B = −2048 ≤ x1 ≤ 2048,−2048 ≤ x2 ≤ 2048. Obviously, the two
inequations have many integer solutions, e.g., x1 = x2 = 0, x1 = x2 = −1,
In particular, for all (integer) solutions, x1 ≤ 0. So Propagate can be applied
2047 times on x1 without making any progress in finding a solution in the
following way:

(B;N) ⇒Propagate
LIABB (B, x1 ≤ 2047;N)

⇒Propagate
LIABB (B, x1 ≤ 2047, x1 ≤ 2046;N)

⇒Propagate
LIABB . . .

On the other hand an application of Decide with β(x1) = β(x2) = − 1
2

immediately rules out the above sequence

(B;N) ⇒Decide
LIABB (B, x1 ≤ −1−

1
2 ;N)

and further a Propagate step combining x1 ≤ −1 with x2 − x1 ≤ 0

⇒Propagate
LIABB (B, x1 ≤ −1−

1
2 , x2 ≤ −1;N)

Next Decide is applied twice with β(x1) = β(x2) = −1 yielding

⇒Decide
LIABB (B, x1 ≤ −1−

1
2 , x2 ≤ −1, x1 ≥ −1−1;N)

⇒Decide
LIABB (B, x1 ≤ −1−

1
2 , x2 ≤ −1, x1 ≥ −1−1, x2 ≥ −1−1;N)

that is in solved form an no more rule is applicable, because M has as its
only LIA solution β(x1) = β(x2) = −1 that is also a solution for N .

350 Automated Reasoning – Some Basics December 2, 2024

The second example consists of three inequations

N = {3x2 ≤ x1, 6x2 ≥ 1 + x1, 2x2 ≤ 3− x1},

where n = 2, |N | = 3, and a = 6, hence c = 1224440064. So the start
state is (B;N), where B = −1224440064 ≤ x1 ≤ 1224440064,−1224440064 ≤
x2 ≤ 1224440064. An application of Decide with β(x1) = 2, β(x2) = 1

2 and
subsequently Propagate yields

(B;N) ⇒Decide
LIABB (B, x1 ≤ 22;N)

⇒Propagate
LIABB (B, x1 ≤ 22, x2 ≤ 1;N)

and one more application of Decide with the above β

⇒Decide
LIABB (B, x1 ≤ 22, x2 ≤ 1, x2 ≤ 0

1
2 ;N).

The above state does not have an LRA solution resulting in the sequence

⇒Backtrack
LIABB (B, x1 ≤ 22, x2 ≤ 1, x2 ≥ 1;N).

⇒Backtrack
LIABB (B, x1 ≥ 3;N).

⇒Propagate
LIABB (B, x1 ≥ 3, x2 ≥ 1;N).

where the Propagate application is the result of combining x1 ≥ 3 and
6x2 ≥ 1 + x1. No rule is applicable to this state anymore because it does not
have a LRA solution. Hence, N does not have a solution in LIA.

I

Already, the above two simple examples show that the a priori up-
per bounds are not very useful in practice, because they grow too
rapidly. Therefore, many implementations of the LIA branch and

bound approach don’t consider them at all.

Note that checking LIA |= ∃x1, . . . , xn.M can be done in linear time
with respect to M . It just means to compare the largest lower bound with
the smallest upper bound for each variable, plus considering some potential
inequations. Checking definedness for a particular inequation is also of lin-
ear time complexity. However, checking the propagation condition LIA |=
∀x1, . . . , xn.[(M ∧N)→ x ◦ d] is difficult, in contrast to checking propagation
in DPLL. This condition needs to be instantiated by affordable techniques.
For example, when applied to the above examples, I restricted Propagate to
the propagation of simple bounds out of M with respect to single inequalities
from N .

ToDo: Some nice pictures for the meaning of the inequations in 2D

