
332 Automated Reasoning – Some Basics December 2, 2024

Given a dependant variable x, an independent variable y, and a set of
equations E, the pivot operation exchanges the roles of x, y in E where y
occurs with non-zero coefficient in the defining equation of x. Let (x ≈ ay+t) ∈
E be the defining equation of x in E. When writing (x ≈ ay + t) for some
equation, I always assume that y �∈ vars(t). Let E′ be E without the defining
equation of x. Then

piv(E, x, y) := {y ≈ 1

a
x+

1

−at} ∪ E′{y �→ (
1

a
x+

1

−at)}.

Given an assignment β, an independent variable y, a rational value c, and
a set of equations E then the update of β with respect to y, c, and E is

upd(β, y, c, E) := β[y �→ c, {x �→ β[y �→ c](t) | x ≈ t ∈ E}].

A Simplex problem state is a quintuple (E;B;β;S; s) where E is a set
of equations; B a set of simple bounds; β an assignment to all variables in
E, B; S a set of derived bounds, and s the status of the problem with s ∈
{�, IV,DV,⊥}. The state s = � indicates that LRA(β) |= S; the state s = IV
that potentially LRA(β) �|= x◦c for some independent variable x, x◦c ∈ S; the
state s = DV that LRA(β) |= x◦c for all independent variables x, x◦c ∈ S, but
potentially LRA(β) �|= x′ ◦ c′ for some dependent variable x′, x′ ◦ c′ ∈ S; and
the state s = ⊥ that the problem is unsatisfiable. In particular, the following
states can be distinguished:

(E;B;β0; ∅;�) is the start state for N and its transformation into E,
B, and assignment β0(x) := 0 for all x ∈ vars(E∪B)

(E; ∅;β;S;�) is a final state, where LRA(β) |= E ∪ S and hence
the problem is solvable

(E;B;β;S;⊥) is a final state, where E ∪B ∪ S has no model

Important invariants of the simplex rules are: (i) for every dependent vari-
able there is exactly one equation in E defining the variable and (ii) dependent
variables do not occur on the right hand side of an equation, (iii) LRA(β) |= E.
These invariants are maintained by a pivot (piv) or an update (upd) operation.
Here are the rules:

EstablishBound (E;B � {x ◦ c};β;S;�) ⇒SIMP (E;B;β;S ∪ {x ◦ c}; IV)

AckBounds (E;B;β;S; s) ⇒SIMP (E;B;β;S;�)
if LRA(β) |= S, s ∈ {IV,DV}

FixIndepVar (E;B;β;S; IV) ⇒SIMP (E;B; upd(β, x, c, E);S; IV)

if (x ◦ c) ∈ S, LRA(β) �|= x ◦ c, x independent

Decidable Logics 333

AckIndepBound (E;B;β;S; IV) ⇒SIMP (E;B;β;S; DV)

if LRA(β) |= x ◦ c, for all independent variables x with bounds x ◦ c in S

FixDepVar≤ (E;B;β;S; DV) ⇒SIMP (E′;B; upd(β, x, c, E′);S; DV)

if (x ≤ c) ∈ S, x dependent, LRA(β) �|= x ≤ c, there is an independent
variable y and equation (x ≈ ay + t) ∈ E where (a < 0 and β(y) < c′

for all (y ≤ c′) ∈ S) or (a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and
E′ := piv(E, x, y)

FixDepVar≥ (E;B;β;S; DV) ⇒SIMP (E′;B; upd(β, x, c, E′);S; DV)

if (x ≥ c) ∈ S, x dependent, LRA(β) �|= x ≥ c, there is an independent
variable y and equation (x ≈ ay + t) ∈ E where (a > 0 and β(y) < c′

for all (y ≤ c′) ∈ S) or (a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and
E′ := piv(E, x, y)

FailBounds (E;B;β;S;�) ⇒SIMP (E;B;β;S;⊥)
if there are two contradicting bounds x ≤ c1 and x ≥ c2 in B ∪ S for some
variable x

FailDepVar≤ (E;B;β;S; DV) ⇒SIMP (E;B;β;S;⊥)
if (x ≤ c) ∈ S, x dependent, LRA(β) �|= x ≤ c and there is no independent
variable y and equation (x ≈ ay + t) ∈ E where (a < 0 and β(y) < c′ for all
(y ≤ c′) ∈ S) or (a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

FailDepVar≥ (E;B;β;S; DV) ⇒SIMP (E;B;β;S;⊥)
if (x ≥ c) ∈ S, x dependent, LRA(β) �|= x ≥ c and there is no independent
variable y and equation (x ≈ ay+ t) ∈ E where (if a > 0 and β(y) < c′ for all
(y ≤ c′) ∈ S) or (if a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

The simplex rules satisfy a number of invariants that eventually lead to
proofs for soundness, completeness and termination. A state (E;B;β; ∅;�) is
called an start state if E is a finite set of equations xi ≈

∑
ai,jyj such that

the xi occur only on left hand sides and only once in E, and B is a finite set
of simple bounds zi ◦ c where zi occurs in E and ◦ ∈ {≤,≥}, and β maps all
variables to 0.

Example 6.2.5 (Simplex Detecting Satisfiability). Consider the equational
system E = {2y+ x ≥ 1, y− x ≤ −2, x ≥ 0} which results after preprocessing
in the sets E0 = {z1 ≈ 2y+x, z2 ≈ y−x} and B0 = {z1 ≥ 1, z2 ≤ −2, x ≥ 0}.
Starting with an initial assignment β0 that maps all variables to 0 and hence
satisfies E0, a Simplex run is as follows. Each line gets a number and I make
references to the components of the simplex state of previous lines with respect
to the line number.

334 Automated Reasoning – Some Basics December 2, 2024

(E0, B0, β0, ∅,�)
(1)⇒EstablishBound

SIMP (E0, B0 \ {x ≥ 0}, β0, {x ≥ 0}, IV)

(2)⇒AckBounds
SIMP (E0, B1, β0, {x ≥ 0},�)

(3)⇒EstablishBound
SIMP (E0, {z2 ≤ −2}, β0, {x ≥ 0, z1 ≥ 1}, IV)

(4)⇒AckIndepBound
SIMP (E0, {z2 ≤ −2}, β0, {x ≥ 0, z1 ≥ 1},DV)

Now the bound z1 ≥ 1 is clearly not satisfied by β0, so in order to fix it
rule FixDepVar≥ is applied. In order to increase z1 with respect to z1 ≈ 2y+x
either y or x need to be increased. Variable y, is not contained in S4 and x is
only bound from below, so both variables can be selected for pivoting. Here
I select x, resulting in the new equational system E5 = {x ≈ −2y + z1, z2 ≈
3y − z1} and assignment β5 = {z1 �→ 1, y �→ 0, x �→ 1, z2 �→ −1}.

(5)⇒FixDepVar≥
SIMP (E5, {z2 ≤ −2}, β5, {x ≥ 0, z1 ≥ 1},DV)

(6)⇒AckBounds
SIMP (E5, {z2 ≤ −2}, β5, S5,�)

(7)⇒EstablishBound
SIMP (E5, ∅, β5, S5 ∪ {z2 ≤ −2}, IV)

(8)⇒AckIndepBound
SIMP (E5, ∅, β5, S7,DV)

Now the bound z2 ≤ −2 is not satisfied by β5, because β5(z2) = −1.
Pivoting on z2 ≈ 3y − z1 on y yields E9 = {x ≈ − 2

3z2 +
1
3z1, y ≈ 1

3 (z2 + z1)}
and assignment β9 = {z2 �→ −2, z1 �→ 1, x �→ 5

3 , y �→ − 1
3}.

(9)⇒FixDepVar≤
SIMP (E9, ∅, β9, {z1 ≥ 1, z2 ≤ −2, x ≥ 0},DV)

(10)⇒AckBounds
SIMP (E9, ∅, β9, S9,�)

Now B10 is empty and β10 satisfies all bounds and hence constitutes a
solution to the initial problem.

The equational system and the respective bounds of Example 6.2.5 can be
interpreted geometrically. Then a FixDepVar rule application corresponds to
testing the intersection points between two of the three initial straights for a
solution.

Example 6.2.6 (Simplex Detecting Unsatisfiability). Consider the equa-
tional system E = {x + 2y ≥ 1, x − y ≤ 3, x ≥ 0, y ≤ −1} which re-
sults after preprocessing in the sets E0 = {z1 ≈ x + 2y, z2 ≈ x − y} and
B0 = {z1 ≥ 1, z2 ≤ 3, x ≥ 0, y ≤ −1}. Starting with an initial assignment β0

that maps all variables to 0 and hence satisfies E0, a Simplex run is as follows.
Again, each line gets a number and I make references to the components of
the simplex state of previous lines with respect to the line number.

(E0, B0, β0, ∅,�)
(1)⇒EstablishBound

SIMP (E0, B0 \ {x ≥ 0}, β0, {x ≥ 0}, IV)

(2)⇒AckBounds
SIMP (E0, B1, β0, {x ≥ 0},�)

(3)⇒EstablishBound
SIMP (E0, B1 \ {y ≤ −1}, β0, {x ≥ 0, y ≤ −1}, IV)

(4)⇒FixIndepVar
SIMP (E0, B3, {x �→ 0, y �→ −1, z1 �→ −2, z2 �→ 1}, S3, IV)

(5)⇒AckBounds
SIMP (E0, B3, β4, S3,�)

(6)⇒EstablishBound
SIMP (E0, B3 \ {z1 ≥ 1}, β4, S3 ∪ {z1 ≥ 1}, IV)

(7)⇒AckIndepBound
SIMP (E0, B6, β4, S6,DV)

Decidable Logics 335

The bound z1 ≥ 1 is not satisfied by β7 because β7(z1) = −2. Pivoting on
x in z1 ≈ x + 2y yields E8 = {x ≈ z1 − 2y, z2 ≈ z1 − 3y} and β8 = {z1 �→
1, y �→ −1, x �→ 3, z2 �→ 4}.

(8)⇒FixDepVar≥
SIMP (E8, B6, β8, {x ≥ 0, y ≤ −1, z1 ≥ 1},DV)

(9)⇒AckBounds
SIMP (E8, B6, β8, S8,�)

(10)⇒EstablishBound
SIMP (E8, ∅, β8, S8 ∪ {z2 ≤ 3}, IV)

(11)⇒AckIndepBound
SIMP (E8, ∅, β8, S10,DV)

(12)⇒FailDepVar≤
SIMP (E8, ∅, β8, S10,⊥)

The bound z2 ≤ 3 is not satisfied by β8 because β8(z2) = 4. In order
to meet the bound the value of z2 needs to be decreased using the equation
z2 ≈ z1 − 3y. So either z1 needs to be decreased, but β8(z1) = 1 and z1 is
bounded below by z1 ≥ 1, or y needs to be increased, but β8(y) = −1 and y
is bounded above by y ≤ −1. Therefore, rule FailDepVar≤ is applicable, the
initial system is unsatisfiable.

Lemma 6.2.7 (Simplex State Invariants). The following invariants hold
for any state (Ei;Bi;βi;Si; si) derived by ⇒SIMP on a start state
(E0;B0;β0; ∅;�):

1. for every dependent variable there is exactly one equation in E defining
the variable

2. dependent variables do not occur on the right hand side of an equation

3. LRA(β) |= Ei

4. for all independant variables x either βi(x) = 0 or βi(x) = c for some
bound x ◦ c ∈ Si

5. for all assignments α it holds LRA(α) |= E0 iff LRA(α) |= Ei

Proof. 1, 2. By induction on the length of a⇒SIMP derivation. A consequence
of the definition of piv.

3. By induction on the length of a⇒SIMP derivation. A consequence of the
definition of upd.

4. By induction on the length of a ⇒SIMP derivation and a case analysis
for all rules changing βi. Recall that initially β0 maps all variables to 0.

5. The piv operation is equivalence preserving, i.e., an assignment α satis-
fies E iff it satisfies piv(E, x, y) for a dependent variable x and an independent
variable y.

Lemma 6.2.8 (Simplex Run Invariants). For any run of ⇒SIMP from start
state (E0;B0;β0; ∅;�)⇒SIMP (E1;B1;β1;S1; s1)⇒SIMP . . .:

1. the set {βo, β1, . . .} is finite

2. if the sets of dependent and independent variables for two equational
systems Ei, Ej coincide, then Ei = Ej

336 Automated Reasoning – Some Basics December 2, 2024

3. the set {Eo, E1, . . .} is finite

4. let Si not contain contradictory bounds, then (Ei;Bi;βi;Si; si)⇒FixIndepVar,∗
SIMP

is finite

Proof. 1. By induction on the length of a ⇒SIMP derivation. Variables are
bound by the βi to constants occurring B0. This set is finite. Furthermore,
the domain of each βi is constant. Hence the set {βo, β1, . . .} is finite.

2. By Lemma 6.2.7.1 and 2, for any dependent variable z there is exactly
one equation z ≈ a1x1 + . . .+ anxn in every E. Now assume that dependent
and independent variables for two equational systems Ei, Ej coincide but
actually Ei and Ej differ in one equation (z ≈ a1x1 + . . . + anxn) ∈ Ei and
(z ≈ b1y1 + . . . + bmym) ∈ Ej . By Lemma 6.2.7.5 it must hold xi = yi and
n = m. It remains to show that the coefficients are identical. For n = 1 this
is obvious. For n ≥ 2 this follows again from Lemma 6.2.7.5 by the following
two assignments γ, γ′, assuming a1 �= b1. The first assignment is defined by
γ(z) = n, and γ(xk) = 1

ak
for 1 ≤ k ≤ n and the second by γ′(z) = n − 2,

γ′(x1) = − 1
a1

and γ′(xk) =
1
ak

for 2 ≤ k ≤ n. Both assignments satisfy the
defining equations for z and can be extended to satisfy Ei and Ej . Then from
γ we can conclude

a1
1

a1
> b1

1

a1
iff a2

1

a2
+ . . .+ an

1

an
< b2

1

a2
+ . . .+ bn

1

an

and from γ′ accordingly

a1
1

a1
> b1

1

a1
iff a2

1

a2
+ . . .+ an

1

an
> b2

1

a2
+ . . .+ bn

1

an

a contradiction.

3. A consequence of 2.

4. The independent variables are in fact independent from each other. Thus
any bound on an independent can be eventually satisfied by rule FixIndepVar.

Corollary 6.2.9 (Infinite Runs Contain a Cycle). Let (E0;B0;β0; ∅;�)⇒SIMP

(E1;B1;β1;S1; s1) ⇒SIMP . . . be an infinite run. Then there are two states
(Ei;Bi;βi;Si; si), (Ek;Bk;βk;Sk; sk) such that i �= k and (Ei;Bi;βi;Si; si) =
(Ek;Bk;βk;Sk; sk).

Proof. The initial sets are all finite. No rule adds a simple bound to any Bi ,
they can only be moved to some Si and stay there. So there are only finitely
many such configurations Bi , Si during a run. By Lemma 6.2.8.1 there are
only finitely many different βi. By Lemma 6.2.8.3 there are only finitely many
different Ei. In sum, any infinite run must contain two identical states, a
cycle.

Decidable Logics 337

Definition 6.2.10 (Reasonable Strategy). A reasonable strategy prefers Fail-
Bounds over EstablishBounds and the FixDepVar rules select minimal vari-
ables x, y in the ordering ≺.
Theorem 6.2.11 (Simplex Soundness, Completeness & Termination). Given
a reasonable strategy and initial set N of inequations and its separation into
E and B :

1. ⇒SIMP terminates on (E0;B0;β0; ∅;�)
2. if (E;B;β0; ∅;�)⇒∗

SIMP (E′;B′;β;S;⊥) then N has no solution

3. if (E;B;β0; ∅;�)⇒∗
SIMP (E′; ∅;β;B;�) and (E′; ∅;β;B;�) is a normal

form, then LRA(β) |= N

4. all final states (E;B;β;S; s) match either 2. or 3.

Proof. 1. (Idea) An infinite run must contain a cycle due to Corollary 6.2.9.
Runs always selecting minimal variables for the FixDepVar rules cannot con-
tain cycles.

2. (Scetch) The fail rules are correct, given Lemma 6.2.7.5.
3. By Lemma 6.2.7.5 and all initial bounds are satisfied by β, because

AckBounds is the only rule generating �.
4. A state (E;B;β;S; IV) can always be rewritten to a state (E;B;β′;S;�)

or (E;B;β′;S; DV). Any state (E;B;β;S; DV) is either rewritten to a final
state (E;B;β;S;⊥) or again a state (E′;B;β′;S; DV). The rest follows from
termination.

In case of strict bounds the idea is to introduce an infinitesimal small constant
δ > 0 and to replace the strict bound by a non-strict one. So, for example, a
bound x < 5 is replaced by x ≤ 5− δ. Now δ is treated symbolically through
the overall computation, i.e., we extend Q to Qδ with new pairs (q, k) with
q, k ∈ Q where (q, k) represents q + kδ and the operations, relations on Q are
lifted to Qδ:

(q1, k1) + (q2, k2) := (q1 + q2, k1 + k2)
p(q, k) := (pq, pk)

(q1, k1) ≤ (q2, k2) := (q1 < q2) ∨ (q1 = q2 ∧ k1 ≤ k2)

Exercises

(6.10) Consider the below sets of inequations and apply the simplex algorithm
to it:

1.
x ≥ 0

x+ y ≥ 1
x+ 2y ≥ 1
x− y ≥ 2

