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Given a dependant variable x, an independent variable y, and a set of
equations F, the pivot operation exchanges the roles of z, y in E where y
occurs with non-zero coefficient in the defining equation of x. Let (z &~ ay+t) €
E be the defining equation of z in E. When writing (x ~ ay + t) for some
equation, I always assume that y ¢ vars(t). Let E' be E without the defining
equation of x. Then

1 1 1 1
iv(E,z,y) ={y~ -+ —tUE{y— (—z+ —1t)}.
piv(E, 2, y) = {y~ —o+ —tUE{y = (Ca+ — 1)}
Given an assignment (3, an independent variable y, a rational value ¢, and
a set of equations E then the update of S with respect to y, ¢, and E is

upd(B,y,¢, E) := By — ¢, {x— Bly — c|(t) |z =t € E}].

A Simplex problem state is a quintuple (E; B;(;S;s) where E is a set
of equations; B a set of simple bounds; § an assignment to all variables in
E, B; S a set of derived bounds, and s the status of the problem with s €
{T,IV,DV, L}. The state s = T indicates that LRA(S) |= S; the state s = IV
that potentially LRA(8) [~ xoc for some independent variable x, xoc € S; the
state s = DV that LRA(8) | woc for all independent variables z, zoc € S, but
potentially LRA(S) £ 2’ o ¢’ for some dependent variable 2/, 2’ o ¢/ € S; and
the state s = L that the problem is unsatisfiable. In particular, the following
states can be distinguished:

(E; B; Bo; 0; T) is the start state for N and its transformation into F,
B, and assignment fy(x) := 0 for all z € vars(EUB)
(E;0;3;5;T) is a final state, where LRA(3) E F U S and hence

the problem is solvable
(E;B; 5;S; L) is a final state, where E'U B U S has no model

Important invariants of the simplex rules are: (i) for every dependent vari-
able there is exactly one equation in E defining the variable and (ii) dependent
variables do not occur on the right hand side of an equation, (iii) LRA(S) E E.
These invariants are maintained by a pivot (piv) or an update (upd) operation.
Here are the rules:

EstablishBound (E;BW{zoc};3;5;T) =smp (E;B;f;SU{zoc}1IV)

AckBounds (E;B; 3;S;s) =smp (E;B;3;5;T)
if LRA(B) = S, s € {IV,DV}

FixIndepVar (E; B; 3;5;1V) =gsivp (F; B;upd(8,z,¢, E); S;1IV)
it (xoc)e S, LRA(B) =z o ¢, x independent
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AckIndepBound (FE;B;j3;S;1V) =smp (E;B;3;S;DV)
if LRA(B) |= o ¢, for all independent variables x with bounds z o ¢ in S

FixDepVar< (E; B; 8;5;DV) =gmp (E'; B;upd(8,z,¢, E'); S;DV)

it (z < ¢) € S, x dependent, LRA(S) = = < ¢, there is an independent
variable y and equation (z ~ ay +t) € E where (¢ < 0 and S(y) < ¢
for all (y < ) € S) or (a > 0 and B(y) > ¢ for all (y > ¢/) € S) and
E' :=piv(E, z,y)

FixDepVar> (E; B; 8;5;DV) =gmp (E'; B;upd(8,z,¢, E'); S;DV)

it (x > ¢) € S, x dependent, LRA(S) = = > ¢, there is an independent
variable y and equation (z ~ ay +t) € E where (¢ > 0 and S(y) < ¢
for all (y < ) € S) or (a < 0 and B(y) > ¢ for all (y > ¢/) € S) and
E' :=piv(E, z,y)

FailBounds (E;B; 5;5;T) =sve (E;B; 5;5;1)
if there are two contradicting bounds z < ¢; and = > ¢ in B U S for some
variable x

FailDepVar<  (E;B;3;5;DV) =swp (E;B;f3;S;1)

if (x <¢) €S, x dependent, LRA(S) £ « < ¢ and there is no independent
variable y and equation (z ~ ay +t) € E where (a < 0 and S(y) < ¢ for all
(y<c)eS)or (a>0and B(y) > forall (y>c)eS)

FailDepVar> (E;B; 8;S;DV) =svp (E;B; 8;5; 1)

if (zr > ¢) € S, x dependent, LRA(S) £ « > ¢ and there is no independent
variable y and equation (x ~ ay +t) € E where (if @ > 0 and S(y) < ¢ for all
(y<d)yeS)or(ifa<0and B(y) > forall (y>)es)

The simplex rules satisfy a number of invariants that eventually lead to
proofs for soundness, completeness and termination. A state (F; B; 3;0; T) is
called an start state if E is a finite set of equations z; ~ " a; jy; such that
the x; occur only on left hand sides and only once in E, and B is a finite set
of simple bounds z; o ¢ where z; occurs in E and o € {<,>}, and [ maps all
variables to 0.

Example 6.2.5 (Simplex Detecting Satisfiability). Consider the equational
system E = {2y+x > 1,y — 2 < —2,2 > 0} which results after preprocessing
in the sets By = {21 ® 2y+x,z0 ~y—x} and By = {21 > 1,20 < =2,z > 0}.
Starting with an initial assignment 3y that maps all variables to 0 and hence
satisfies Fy, a Simplex run is as follows. Each line gets a number and I make
references to the components of the simplex state of previous lines with respect
to the line number.
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1) :>EstabhshBound
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E(),Bo \ {.23 > 0} ﬁo,{x > 0} IV)

(
(Eo, B, Bo,{x > 0}, T)
(

E {22< 2} 50,{5E>021>1} IV)
) :>§I'31\1211;1dep]30und (EO7 {ZQ S _2}7ﬂ07 {(E 2 07 21 Z 1}3DV)

Now the bound z; > 1 is clearly not satisfied by gy, so in order to fix it
rule FixDepVar> is applied. In order to increase z; with respect to z; ~ 2y+=
either y or x need to be increased. Variable y, is not contained in Sy and z is
only bound from below, so both variables can be selected for pivoting. Here
I select x, resulting in the new equational system E5 = {& = —2y + 21,20 =
3y — z1} and assignment 85 = {z1 — Ly — 0,2 +— 1,29 — —1}.

(3) =sne" "% (Bs {22 < —2},65,{z 2 0,21 2 1},DV)
( (E57{Z2 S _2}7557557T)

( ) Est"mbhshBound (E57 ®’ﬁ5, SS U {22 S —2},IV>

( ) lsAI(i\ljlllgdepBound (E57 wa ﬁ57 575 DV)

Now the bound z; < —2 is not satisfied by 65, because Bs(z2) = —1.
Pivoting on zo ~ 3y — 2z; on y yields Fy = {x ~ —722 —|— zl,y =~ %(Zg +21)}
and assignment By = {20 — —2,21 = Lz — 2,y —1}.

(9) :>gﬁ\(/IDprvar< (E9a (Z)a /697 {Zl Z 1a 22 S 27 X Z 0}7 DV)
(10) :>SAI%\1;I%’0undS (E97 (Da 1897 Sga T)

Now Bjp is empty and [ satisfies all bounds and hence constitutes a

solution to the initial problem.

(

(

(2) :>AckBounds
( ) :>EstabhshBound
(4

6) :>ACkB0und:>

The equational system and the respective bounds of Example 6.2.5 can be
interpreted geometrically. Then a FixDepVar rule application corresponds to
testing the intersection points between two of the three initial straights for a
solution.

Example 6.2.6 (Simplex Detecting Unsatisfiability). Consider the equa-
tional system F = {z +2y > L,z —y < 3,z > 0,y < —1} which re-
sults after preprocessing in the sets Ey = {21 = = + 2y,20 = x — y} and
By ={z1 > 1,20 <3, >0,y < —1}. Starting with an initial assignment [
that maps all variables to 0 and hence satisfies Ey, a Simplex run is as follows.
Again, each line gets a number and I make references to the components of
the simplex state of previous lines with respect to the line number.

(E07 BO) 507 wa T)

EstablishBound
1) =sivp
AckBounds
2) =sivp
3 :>Estab1ishBound

leIndepVar
= SIMP

AckBounds
=SIMP

6 igfﬁ/?llglishBound

AckIndepBound
SIMP

)
)
)
5)
)
)

(Eo, Bo \ {z > 0}, Bo, {z > 0},1V)

(Eo, B1, fo, {x > 0}, T)

(Eo, Bi\ {y < =1}, 80, {z > 0,y < —1},1V)

(Eo, B3, {x+— 0,y — —1,21 — —2, 29+ 1}, 55,1V)
(Eo, B3, 84,53, T)

(Eo, B3\ {z1 > 1}, 84, S5 U {2z > 1},1V)

(Ev, Bs, B4, Sg, DV)
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The bound z; > 1 is not satisfied by f7 because f7(z1) = —2. Pivoting on
xin z; &~ x + 2y yields Fs = {& &~ 21 — 2y,22 = 21 — 3y} and Bs = {21 —

Ly~ =1,z — 3,20 — 4}.
(8) =sap”

(9) =3t

E87B6a/687{$ > O7y < —1,21 > 1}7DV)

E87 Bﬁa 68a SSa T)
(10) igfﬁfghsm?’ound Eg, QL ﬁg, Sg U {ZQ < 3}, IV)
AckIndepBound

(11) =gvp Es, 0, B, S10,DV)
(12) =g ™™= (Bs, 0, Bs, S0, L)

The bound z5 < 3 is not satisfied by s because fg(z2) = 4. In order
to meet the bound the value of z; needs to be decreased using the equation
29 & z1 — 3y. So either z; needs to be decreased, but Ss(z1) = 1 and 21 is
bounded below by z; > 1, or y needs to be increased, but fs(y) = —1 and y
is bounded above by y < —1. Therefore, rule FailDepVar< is applicable, the
initial system is unsatisfiable.

(
(
(
(

Lemma 6.2.7 (Simplex State Invariants). The following invariants hold
for any state (Fy;Bj;[B:;S:;8;) derived by =-smqp on a start state
(Eo; Bos Bo; 0; T):

1. for every dependent variable there is exactly one equation in E defining
the variable

2. dependent variables do not occur on the right hand side of an equation
3. LRA(B) E E;

4. for all independant variables z either f8;(x) = 0 or §;(z) = ¢ for some
bound xoc € S}

5. for all assignments « it holds LRA(«) = Ey iff LRA(«) = E;

Proof. 1, 2. By induction on the length of a =-gp\p derivation. A consequence
of the definition of piv.

3. By induction on the length of a =-gp\p derivation. A consequence of the
definition of upd.

4. By induction on the length of a =gp\p derivation and a case analysis
for all rules changing ;. Recall that initially Sy maps all variables to 0.

5. The piv operation is equivalence preserving, i.e., an assignment « satis-
fies F iff it satisfies piv(FE, z,y) for a dependent variable z and an independent
variable y. O

Lemma 6.2.8 (Simplex Run Invariants). For any run of =gpyp from start
state (Eo; Bo; Bo; 0; T) =sivp (E1; Bi; 815815 51) =sivp - - -

1. the set {fB,, 51, ..} is finite

2. if the sets of dependent and independent variables for two equational
systems E;, E; coincide, then E; = E;
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3. the set {E,, Ey,...} is finite
4. let S; not contain contradictory bounds, then (F;; By; 8;; Si; 8:) ég;XMlgdepvar’*
is finite

Proof. 1. By induction on the length of a =-gyp derivation. Variables are
bound by the §; to constants occurring By. This set is finite. Furthermore,
the domain of each 3; is constant. Hence the set {5,, 31, ..} is finite.

2. By Lemma 6.2.7.1 and 2, for any dependent variable z there is exactly
one equation z =~ aix1 + ...+ a, T, in every E. Now assume that dependent
and independent variables for two equational systems FEj;, F; coincide but
actually E; and E; differ in one equation (z ~ a1z1 + ...+ a,x,) € E; and
(z = biys + ...+ bmym) € E;. By Lemma 6.2.7.5 it must hold z; = y; and
n = m. It remains to show that the coeflicients are identical. For n = 1 this
is obvious. For n > 2 this follows again from Lemma 6.2.7.5 by the following
two assignments «y, 7', assuming a; # b;. The first assignment is defined by
v(z) = n, and y(xy) = é for 1 < k < n and the second by v/(z) = n — 2,
v (x1) = 7(711 and /' (xg) = i for 2 < k < n. Both assignments satisfy the
defining equations for z and can be extended to satisfy F; and £;. Then from
v we can conclude

1 1 1 1 1 1
a1—>b1— iff ag——|——|—an—<b2—++bn—
ai ay a2 Qp a2 Qp

and from +/ accordingly

1 1 1 1 1 1
ar— > b1 — iff ao— +...+ap,— >bo— + ...+ b,—
ai ay a2 Qp, a2 2%
a contradiction.
3. A consequence of 2.
4. The independent variables are in fact independent from each other. Thus

any bound on an independent can be eventually satisfied by rule FixIndepVar.
O

Corollary 6.2.9 (Infinite Runs Contain a Cycle). Let (Eo; Bo; 80;0; T) =sivp
(E1;B1;f1;51;81) =sivp --. be an infinite run. Then there are two states
(Ey; Bi; Bi; Si; 8i), (Ey; Bi; Br; Sk; sx) such that @ # k and (E;; By; Bi;5:; 1) =
(Ex; Bi; Br; Sk; sk)-

Proof. The initial sets are all finite. No rule adds a simple bound to any B; ,
they can only be moved to some S; and stay there. So there are only finitely
many such configurations B; , S; during a run. By Lemma 6.2.8.1 there are
only finitely many different ;. By Lemma 6.2.8.3 there are only finitely many
different F;. In sum, any infinite run must contain two identical states, a
cycle. O
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Definition 6.2.10 (Reasonable Strategy). A reasonable strategy prefers Fail-
Bounds over EstablishBounds and the FixDepVar rules select minimal vari-
ables x, y in the ordering <.

Theorem 6.2.11 (Simplex Soundness, Completeness & Termination). Given
a reasonable strategy and initial set N of inequations and its separation into
F and B :

1. =gmvp terminates on (Eo; Bo; Bo; 0; T)
2. if <E;B;ﬁ0;®; T) = SIMP (E/§B/;B;S;L) then N has no solution

3. if (B B; Bo; 0;T) =&mp (E'50; 8, B; T) and (E';0; 8; B; T) is a normal
form, then LRA(B) = N

4. all final states (F; B; 8;S; s) match either 2. or 3.

Proof. 1. (Idea) An infinite run must contain a cycle due to Corollary 6.2.9.
Runs always selecting minimal variables for the FixDepVar rules cannot con-
tain cycles.

2. (Scetch) The fail rules are correct, given Lemma 6.2.7.5.

3. By Lemma 6.2.7.5 and all initial bounds are satisfied by [, because
AckBounds is the only rule generating T.

4. A state (E; B; 8;S;1V) can always be rewritten to a state (E; B; 8';.5;T)
or (E;B;';S;DV). Any state (E; B; 8;5;DV) is either rewritten to a final
state (F; B; 3;.5; L) or again a state (E’; B; 8';.S; DV). The rest follows from
termination. O

In case of strict bounds the idea is to introduce an infinitesimal small constant
0 > 0 and to replace the strict bound by a non-strict one. So, for example, a
bound z < 5 is replaced by x < 5 — §. Now ¢ is treated symbolically through
the overall computation, i.e., we extend Q to Qs with new pairs (¢, k) with
q,k € Q where (q, k) represents g + ké and the operations, relations on Q are
lifted to Qs:

(g1, k1) + (g2, k2) :==(q1 + q2, k1 + k2)
p(q, k) == (pq, pk)
(g1, k1) < (g2, k2) = (q1 < q2) V (q1 = g2 N1 < ko)

Exercises

(6.10) Consider the below sets of inequations and apply the simplex algorithm
to it:

1.
x > 0
z+y > 1
r+2y > 1
r—y > 2



