
2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 75

2.9 Conflict Driven Clause Learning (CDCL)

The CDCL calculus tests satisfiability of a finite set N of propositional clauses.
Similar to DPLL, Section 2.8, the CDCL calculus explicitely builds a candi-
date model for a clause set. If such a sequence of literals L1, . . . , Ln satisfies
the clause set N , it is done. If not, there is a false clause C ∈ N with respect
to L1, . . . , Ln. Now instead of just backtracking through the literals L1, . . . , Ln
as done in DPLL, CDCL generates an additional clause, called learned clause,
that actually guarantees that the subsequence of L1, . . . , Ln that caused C to be
false will not be generated anymore. This causes CDCL to be exponentially more
powerful in proof length than its predecessor DPLL, Section 2.8, or Tableau,
Section 2.4, see Theorem 2.14.2. The learned clause is always a resolvent from
clauses in N , so CDCL can be viewed as a combination of DPLL (Tableau)
and Resolution. More precisely, it can be understood as a resolution variant
where a partial model assumption triggers which resolvents are actually gen-
erated. In this regard it is similar to propositional Superposition, Section 2.7,
where a model assumption generated out of an a priori total ordering on the
propositional variables triggers the relevant resolution steps, see the proof of
propositional superposition completeness, Theorem 2.7.11. I investigate the con-
nection between model assumptions, proof length, completeness and orderings
in Section 2.11.

For any clause set N , I assume that ⊥ 6∈ N and that the clauses in N do not
contain duplicate literal occurrences. Furthermore, duplicate literal occurrences
are always silently removed during rule applications of the calculus. A CDCL
problem state is a five-tuple (M ;N ;U ; k;D) where M a sequence of annotated
literals, called a trail, N and U are sets of clauses, k ∈ N, and D is a non-
empty clause or > or ⊥, called the mode of the state. The set N is initialized
by the problem clauses where the set U contains all newly learned clauses that
are consequences of clauses from N derived by resolution. In particular, the
following states can be distinguished:

(ε;N ; ∅; 0;>) is the start state for some clause set N
(M ;N ;U ; k;>) is a final state, if M |= N and all literals from N are

defined in M
(M ;N ;U ; k;⊥) is a final state, where N has no model
(M ;N ;U ; k;>) is an intermediate model search state if M 6|= N
(M ;N ;U ; k;D) is a backtracking state if D 6∈ {>,⊥}

Literals in L ∈ M are either annotated with a number, a level, i.e., they
have the form Lk meaning that L is the k − th guessed decision literal, or they
are annotated with a clause that forced the literal to become true. A literal L
is of level k with respect to a problem state (M ;N ;U ; j;C) if L or comp(L)
occurs in M and L itself or the first decision literal left from L (comp(L)) in M
is annotated with k. If there is no such decision literal then k = 0. A clause D
is of level k with respect to a problem state (M ;N ;U ; j;C) if k is the maximal
level of a literal in D. Recall C is a non-empty clause or > or ⊥. The rules are

76 CHAPTER 2. PROPOSITIONAL LOGIC

Propagate(M ;N ;U ; k;>) ⇒CDCL (MLC∨L;N ;U ; k;>)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M ;N ;U ; k;>) ⇒CDCL (MLk+1;N ;U ; k + 1;>)

provided L is undefined in M

Conflict (M ;N ;U ; k;>) ⇒CDCL (M ;N ;U ; k;D)

provided D ∈ (N ∪ U) and M |= ¬D

Skip (MLC∨L;N ;U ; k;D) ⇒CDCL (M ;N ;U ; k;D)

provided D 6∈ {>,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D ∨ comp(L)) ⇒CDCL (M ;N ;U ; k;D ∨ C)

provided D is of level k

Backtrack (M1K
i+1M2;N ;U ; k;D ∨ L) ⇒CDCL (M1L

D∨L;N ;U ∪ {D ∨
L}; i;>)

provided L is of level k and D is of level i.

Restart (M ;N ;U ; k;>) ⇒CDCL (ε;N ;U ; 0;>)

provided M 6|= N

Forget (M ;N ;U] {C}; k;>) ⇒CDCL (M ;N ;U ; k;>)

provided M 6|= N

Compared to expositions of this calculus in the literature, e.g. [72], the above
rule set is more concrete. It does not need a Fail rule anymore and 1-UIP
backjumping [16] is build in. The clause D ∨ L immediately propagates after
Backtracking.

Recall that ⊥ denotes the empty clause, hence failure of searching for a
model. The level of the empty clause ⊥ is 0. The clause D ∨ L added in rule
Backtrack to U is called a learned clause. When applying Resolve I silently as-
sumed that duplicate literal occurrences are merged, i.e., the clause D∨comp(L)
is always condensed (see Section 2.7). Compared to superposition, condensation
is always applied eagerly without mentioning. The CDCL algorithm stops with
a model M if neither Propagate nor Decide nor Conflict are applicable to a state
(M ;N ;U ; k;>), hence M |= N and all literals of N are defined in M . The only
possibility to generate a state (M ;N ;U ; k;⊥) is by the rule Resolve. So in case
of detecting unsatisfiability the CDCL algorithm actually generates a resolution
proof as a certificate. I will discuss this aspect in more detail in Section 2.11.
In the special case of a unit clause L, the rule Propagate actually annotates the
literal L with itself. So the propagated literals on the trail are annotated with
the respective propagating clause and the decision literals with the respective
level.

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 77

Obviously, the CDCL rule set does not terminate in general for a number of
reasons. For example, starting with (ε;N ; ∅; 0;>) any combination of the rules
Propagate, Decide and eventually Restart yields the start state again. Even after
a successful application of Backtrack, exhaustive application of Forget followed
by Restart again may produce the start state. So why these rules Forget and
Restart? Actually, any modern SAT solver makes use of the two rules. The rule
Forget is needed to get rid of “redundant” clauses. For otherwise, the number
of clauses in N ∪ U may get too large to be processed anymore in an efficient
way. The rule Restart makes sense with respect to a suitable heuristic (see
Section 2.10.2) for selecting the decision literals. If applied properly, it helps the
calculus to focus on a part of N where it currently can make progress [16]. I will
further motivate the rules later on.

C

The original SAT literature [84, 58, 70, 16] does not contain a theo-
retical foundation for a redundancy concept for CDCL. Redundancy
has been experimentally developed based on heuristics where com-
pleteness is guaranteed in many implementations by increasing the number of
overall kept clauses over a run and by following the DPLL style systematic ex-
ploration of potential models. I will develop a theoretical foundation for CDCL
redundancy in Section 2.11. There, I will also discuss clause minimization, Sec-
tion 2.13.2, a technique to strenghten learned clauses implemented in almost all
CDCL solvers.

The following examples show that if the CDCL rules are applied in an ar-
bitrary way, then many unwanted phenomena can happen. Proofs can become
longer than needed, the rules can produce stuck states and clauses are learned
that are already contained in the set N ∪ U . In order to overcome all these
situations, a strategy prioritizing certain rule applications is eventually added.

Example 2.9.1 (CDCL Lengthy Proof). Consider the clause set N = {P ∨
Q,¬P ∨Q,¬Q} which is unsatisfiable. The below is a CDCL derivation proving
this fact. The chosen strategy for CDCL rule selection priorizing the rule Decide
produces a lengthy proof.

78 CHAPTER 2. PROPOSITIONAL LOGIC

(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1¬Q2;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1¬Q2;N ; ∅; 2;¬P ∨Q)

⇒Backtrack
CDCL (P 1Q¬P∨Q;N ; {¬P ∨Q}; 1;>)

⇒Conflict
CDCL (P 1Q¬P∨Q;N ; {¬P ∨Q}; 1;¬Q)

⇒Backtrack
CDCL (¬Q¬Q;N ; {¬P ∨Q,¬Q}; 0;>)

⇒Decide
CDCL (¬Q¬QP 1;N ; {¬P ∨Q,¬Q}; 1;>)

⇒Conflict
CDCL (¬Q¬QP 1;N ; {¬P ∨Q,¬Q}; 1;¬P ∨Q)

⇒Backtrack
CDCL (¬Q¬Q¬P¬P∨Q;N ; {¬P ∨Q,¬Q}; 0;>)

⇒Conflict
CDCL (¬Q¬Q¬P¬P∨Q;N ; {¬P ∨Q,¬Q}; 0;P ∨Q)

⇒Resolve
CDCL (¬Q¬Q;N ; {¬P ∨Q,¬Q}; 0;Q)

⇒Resolve
CDCL (ε;N ; {¬P ∨Q,¬Q}; 0;⊥)

Example 2.9.2 (CDCL Short Proof). Consider again the clause set N = {P ∨
Q,¬P ∨ Q,¬Q} from Example 2.9.1. For the following CDCL derivation the
rules Propagate and Conflict are preferred over the other rules.

(ε;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬Q;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;>)

⇒Conflict
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;¬P ∨Q)

⇒Resolve
CDCL (¬Q¬Q;N ; ∅; 0;Q)

⇒Resolve
CDCL (ε;N ; ∅; 0;⊥)

Example 2.9.3 (CDCL Stuck). The CDCL calculus can even get stuck, i.e., a
sequence of rule applications leads to a state where no rule is applicable anymore,
but the state does neither indicate satisfiability, nor unsatisfiability. Consider a
clause set N = {Q ∨ P,¬P ∨ ¬R, . . .} and the derivation

(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1R2;N ; ∅; 2;>)

⇒Decide
CDCL (P 1R2Q3;N ; ∅; 3;>)

⇒Conflict
CDCL (P 1R2Q3;N ; ∅; 3;¬P ∨ ¬R).
Obviously, neither Skip nor Resolve are applicable to the final state. Back-

tracking is not applicable as well because ¬P ∨ ¬R is of level 2 and the actual
level of the final state is 3.

C

Stuck states could be prevented in various ways. Either by following a
particular strategy in case several rules are applicable. The reasonable
strategy below, Definition 2.9.5, has this property. Or by changing the

rules themselves. For example, if Skip is modified to remove decision literals from
the trail, this can also prevent stuck states, see Exercise ??.

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 79

Example 2.9.4 (CDCL Redundancy). The CDCL calculus can also produce
redundant clauses, in particular learn a clause that is already contained in N∪U .
Consider again a clause set N = {Q ∨ P,¬P ∨ ¬R, . . .} and the derivation

(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1R2;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1R2;N ; ∅; 2;¬P ∨ ¬R).

⇒Backtrack
CDCL (P 1¬R¬P∨¬R;N ; {¬P ∨ ¬R}; 1;>)

where the clause ¬P ∨ ¬R is learned although it is already contained in N .

I

In an implementation the rule Conflict is preferred over the rule Prop-
agate and both over all other rules. Exactly this strategy has been
used in Example 2.9.2 and is called reasonable below. A further in-
gredient of a state-of-the-art implementation is a dynamic heuristic which literal
is actually used by the rule Decide. This heuristic typically depends on the lit-
erals resolved on by the rule Resolve or contained in eventually learned clause.
All these literals “get a bonus”, see Section 2.10.2 for details.

Definition 2.9.5 (Reasonable CDCL Strategy). A CDCL strategy is reasonable
if the rules Conflict and Propagate are always preferred over all other rules.

Proposition 2.9.6 (CDCL Basic Properties). Consider a CDCL state
(M ;N ;U ; k;C) derived from a start state (ε,N, ∅, 0,>) by any strategy but
without using the rules Restart and Forget. Then the following properties hold:

1. M is consistent.

2. All learned clauses are entailed by N .

3. If C 6∈ {>,⊥} then M |= ¬C.

4. If C = > and M contains only propagated literals then for each valuation
A with A |= N it holds that A |= M .

5. If C = >, M contains only propagated literals and M |= ¬D for some
D ∈ (N ∪ U) then N is unsatisfiable.

6. If C = ⊥ then CDCL terminates and N is unsatisfiable.

7. k is the maximal level of a literal in M .

8. Each infinite derivation

(ε;N ; ∅; 0;>)⇒CDCL (M1;N ;U1; k1;D1)⇒CDCL . . .

contains an infinite number of Backtrack applications.

80 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. 1. M is consistent if it does does not contain L and comp(L) at the same
time. The only rules that add literals are Propagate, Decide, and Backtrack. The
rules Propagate and Decide only add undefined literals to M . By an inductive
argument this holds also for Backtrack as it just removes literals from M and
flips one literal already contained in M .

2. A learned clause is always a resolvent of clauses from N ∪ U and eventu-
ally added to U where U is initially empty. By soundness of resolution (Theo-
rem 2.6.1) and an inductive argument it is entailed by N .

3. A clause C 6∈ {>,⊥} can only occur after Conflict where M |= ¬C. The
rule Skip does not change C and only deletes propagated literals from M that
are not contained in C. By an inductive argument, if the rule Resolve is applied
to a state (M ′ comp(L)D

′∨comp(L);N ;U ; k;D∨L) where C = D∨L resulting in
(M ′;N ;U ; k;D∨D′) then M ′ |= ¬D because M ′ |= ¬C and M ′ |= ¬D′ because
comp(L) was propagated with respect to M ′ and D′ ∨ comp(L).

4. Proof by induction on the number n of propagated literals in M . Let
M = L1, . . . , Ln, Ln+1. There are two rules that could have added Ln+1. (i) rule
Propagate: in this case there is a clause C = D ∨ Ln+1 where Ln+1 was unde-
fined in M and M |= ¬D. By induction hypothesis for each valuation A with
A |= N it holds that A(Li) = 1 for all i ∈ {1, . . . , n}. Since all literals in D
appear negated in M with the induction hypothesis it holds that all those liter-
als must have the truth value 1 in any valuation A. Therefore, for the clause C
to be true Ln+1 must be true as well in any valuation. It follows that for each
valuation A it holds that A(Li) = 1 for all i ∈ {1, . . . , n + 1}. (ii) rule Back-
track: the state (M1K

i+1M2;N ;U ; k;D ∨ Ln+1) where M |= ¬(D ∨ Ln+1) (by
Proposition 2.9.6.3) and M1 = L1 . . . Ln with only propagated literals results

in (M1L
D∨Ln+1

n+1 ;N ;U ; i;>). With the induction hypothesis for each valuation
A with A |= N it holds that A(Li) = 1 for all 1 ≤ i ≤ n, i.e., in particular for
each literal L in D it holds A(L) = 0 since each literal in D appears negated in
M1. Thus, for each each valuation A with A |= N it holds A(Ln+1) = 1.

5. Let D = K1∨. . .∨Km. Since M |= ¬D it holds that comp(Ki) ∈M for all
1 ≤ i ≤ m. With Proposition 2.9.6.4 for each valuation A with A |= N it holds
that A(L) = 1 for all L ∈M . Thus in particular it holds that A(comp(Ki)) = 1
for all 1 ≤ i ≤ m. Therefore D is always false under any valuation A and N is
unsatisfiable.

6. By the definition of the rules the state (M ;N ;U ; k;⊥) can only be reached
if the rule Conflict sets the mode of a state (M ′;N ;U ; k;>) to a conflict clause
D. Then Resolve is eventually used to derive ⊥. By Proposition 2.9.6-2 it follows
that N is unsatisfiable.

7. By induction on the number of rule applications. Actually, I prove some-
thing stronger, for any state (M ;N ;U ; k;D) reachable from a start state, k
is the maximal level of literal in M and M includes exactly one literal Li for
1 ≤ i ≤ k in increasing order from left to right. For the initial state (ε;N ; ∅; 0;>)
the trail M is empty so k = 0 is fine. The only rules that manipulate decision

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 81

literals in M or k are Decide, Backtrack, and Restart. Restart is fine as well.
For Decide the level k is increased to k + 1 and a literal Lk+1 is added right to
M , so Decide is also fine. For Backtrack all decision literals including Ki+1 are
deleted from right to left from the trail, so by induction hypothesis it includes
a decision literal of level i. But this is exactly the level that Backtrack sets for
the new state.

8. Proof by contradiction. Assume Backtrack is applied only finitely often in
the infinite trace. Then there exists an i and a state (Mi;N ;Ui; ki;Di) such that
there is no Backtrack application beyond this state. Propagate and Decide can
only be applied as long as there are undefined literals in M . Since N is finite
there can only be finitely many rule applications of Propagate and Decide.

By definition the application of the rules Skip, Resolve and Backtrack is
preceded by an application of the rule Conflict. The rules Skip and Resolve can
only be applied finitely often until a decision literal is the rightmost literal of
M , or M becomes empty. For the rule Conflict to be applied infinitely often
mode has to change back to >. But the only rule that changes the mode to >
is Backtrack which is not applied anymore. A contradiction.

Lemma 2.9.7 (CDCL Redundancy). Consider a CDCL derivation by a rea-
sonable strategy. Then CDCL never learns a clause contained in N ∪ U .

Proof. By contradiction. Assume CDCL learns the same clause twice, i.e.,
it reaches a state (M ;N ;U ; k;D ∨ L) where Backtracking is applica-
ble and D ∨ L ∈ (N ∪ U). More precisely, the state has the form
(M1K

i+1M ′2K
k
1K2 . . .Kn;N ;U ; k;D ∨ L) where the Kj , j > 1 are propagated

literals that do not occur complemented in D, as for otherwise D cannot be of
level i. Furthermore, one of the Kj is the complement of L. But now, because
D ∨ L is false in M1K

i+1M ′2K
k
1K2 . . .Kn and D ∨ L ∈ (N ∪ U) instead of de-

ciding Kk
1 the literal L should have been propagated by a reasonable strategy.

A contradiction. Note that none of the Kj can be annotated with D ∨ L.

Corollary 2.9.8 (CDCL Redundancy). Consider a CDCL derivation by a rea-
sonable strategy. Then CDCL never learns a clause subsumed by a clause in
N ∪ U .

Proof. Exercise ??.

A reasonable strategy is mandatory for the above result. Example 2.9.4 shows
that prioritizing Decide over Propagate can result in learning a clause contained
in N ∪ U . The below example shows that even if CDCL starts Conflict with a
redundant clause, one that is already subsumed, the eventually learned clause
is not redundant.

Example 2.9.9 (CDCL Subsumed Conflict). Consider the clause set N =
{¬P ∨Q,¬P ∨R,¬P ∨ ¬R ∨ ¬Q,¬P ∨ ¬R ∨Q, . . .} and a derivation

82 CHAPTER 2. PROPOSITIONAL LOGIC

(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Propagate
CDCL (P 1R¬P∨R;N ; ∅; 1;>)

⇒Propagate
CDCL (P 1R¬P∨R¬Q¬P∨¬R∨¬Q;N ; ∅; 1;>)

⇒Conflict
CDCL (P 1R¬P∨R¬Q¬P∨¬R∨¬Q;N ; ∅; 1;¬P ∨ ¬R ∨Q)

⇒Resolve
CDCL (P 1R¬P∨R;N ; ∅; 1;¬P ∨ ¬R)

⇒Resolve
CDCL (P 1;N ; ∅; 1;¬P)

⇒Backtrack
CDCL (¬P¬P ;N ; {¬P}; 0;>)

Note that although the conflict clause ¬P ∨ ¬R ∨ Q is subsumed by ¬P ∨ Q,
the eventually learned clause ¬P is not redundant.

Lemma 2.9.10 (CDCL Soundness). In a reasonable CDCL derivation, CDCL
can only terminate in two different types of final states: (M ;N ;U ; k;>) where
M |= N and (M ;N ;U ; k;⊥) where N is unsatisfiable.

Proof. If CDCL terminates with (M ;N ;U ; k;>) then all literals ofN are defined
in M and Conflict is not applicable, i.e., for all clauses C ∈ N it holds M |=
C, so M |= N . In addition if CDCL terminates with (M ;N ;U ; k;⊥) then by
Proposition 2.9.6.2 the clause set N is unsatisfiable.

What remains is to show that with a reasonable strategy CDCL cannot
get stuck, see Example 2.9.3. I prove that no stuck state can be reached
by contradiction. Assume that CDCL terminates in a terminating state
(M1K

i+1M ′2K
k
1K2 . . .Kn;N ;U ; k;D ∨ L), where the Ki, i > 1, are propagated

literals. If, without loss of generality, comp(Kn) 6= L and n > 1 then Skip is
applicable. If comp(Kn) = L then either Resolve or Backtrack is applicable.
Since neither Skip, Resolve, or Backtrack are applicable, it holds n = 1 and the
complement of Kk

1 does not occur in D ∨ L. But then M1K
i+1M ′2 |= ¬(D ∨ L)

so the decision on Kk
1 contradicts a reasonable strategy.

Proposition 2.9.11 (CDCL Soundness). The rules of the CDCL algorithm are
sound: (i) if CDCL terminates from (ε;N ; ∅; 0;>) in the state (M ;N ;U ; k;>),
then N is satisfiable, (ii) if CDCL terminates from (ε;N ; ∅; 0;>) in the state
(M ;N ;U ; k;⊥), then N is unsatisfiable.

Proof. (i) by Proposition 2.9.6.1 the sequence M is always consistent. Since
(M ;N ;U ; k;>) is a final state neither Decide nor Propagate can be applied and
hence all atoms of literals in N occur in M . Furthermore, the state is not a
result of an application of the Conflict rule nor is the Conflict rule applicable.
Therefore, there is no D ∈ (N ∪ U) with M |= ¬D and since all literals in N
are defined in M this means M |= N , so N is satisfiable.

(ii) the rule that first produces (M ;N ;U ; k;⊥) is Resolve. By Proposi-
tion 2.9.6.2 all learned clauses are entailed by N , hence N is unsatisfiable.

Proposition 2.9.12 (CDCL Strong Completeness). The CDCL rule set is com-
plete: for any valuation M with M |= N there is a reasonable sequence of rule

2.9. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 83

applications generating (M ′;N ;U ; k;>) as a final state, where M and M ′ only
differ in the order of literals.

Proof. By induction on the length of M . Assume we have already reached a state
(M ′;N ;U ; k;>) where M ′ ⊂ M . If Propagate is applicable to (M ′;N ;U ; k;>)
extending it to (M ′LC∨L;N ;U ; k;>) then L ∈M . For otherwise, I pick a literal
L ∈M that is not defined in M ′ and apply Decide yielding (M ′Lk+1;N ;U ; k+
1;>). The rule Conflict is not applicable, because M |= N and M ′ ⊂M .

Proposition 2.9.13 (CDCL Termination). Assume the algorithm CDCL with
all rules except Restart and Forget is applied using a reasonable strategy. Then
it terminates in a state (M ;N ;U ; k;D) with D ∈ {>,⊥}.

Proof. By Lemma 2.9.10 if CDCL terminates using a reasonable strategy then
D ∈ {>,⊥}. I show termination by contradiction. By Proposition 2.9.6.8 an
infinite run includes infinitely many Backtrack applications. By Lemma 2.9.7
each learned clause does not occur in N ∪ U . But there are only finitely many
different condensed clauses with respect to the finite signature contained in N .
A contradiction.

The CDCL rule set does not terminate in general. This is due to the rules
Restart and Forget. If they are applied only finitely often then the algorithm
terminates. Then at some point of the derivation the final application of Restart
and Forget occurred. From this point onwards Proposition 2.9.13 applies, pro-
vided a reasonable strategy.

Example 2.9.14 (CDCL Termination I). Consider the clause set N = {P ∨
Q,¬P ∨ Q,¬Q}. The CDCL algorithm does not terminate due to the rule
Restart.

(ε;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬Q;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;>)

⇒Restart
CDCL (ε;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬Q;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;>)

⇒Restart
CDCL (ε;N ; ∅; 0;>)

⇒CDCL . . .

Example 2.9.15 (CDCL Termination II). Consider the clause set N = {¬P ∨
Q∨¬R,¬P ∨Q∨R}. The CDCL algorithm does not terminate due to the rule
Forget.

84 CHAPTER 2. PROPOSITIONAL LOGIC

(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1¬Q2;N ; ∅; 2;>)

⇒Propagate
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;¬P ∨Q ∨R)

⇒Resolve
CDCL (P 1¬Q2;N ; ∅; 2;¬P ∨Q)

⇒Backtrack
CDCL (P 1;N ; {¬P ∨Q}; 1;>)

⇒Forget
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1¬Q2;N ; ∅; 2;>)

⇒Propagate
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;¬P ∨Q ∨R)

⇒CDCL . . .

As an alternative and positive proof of Proposition 2.9.13 the CDCL termi-
nation can be shown by assigning a well-founded measure µ and proving that
it decreases with each rule application except for the rules Restart and Forget.
Let n be the number of propositional variables in N . The range for the measure
µ is N× {0, 1} × N.

µ((M ;N ;U ; k;D)) =

{
(3n − 1− |U |, 1, n− |M |) , D = >
(3n − 1− |U |, 0, |M |) , else

The well-founded ordering is the lexicographic extension of < to triples.
What remains to be shown is that each rule application except Restart and
Forget decreases µ. This is done via a case analysis over the rules:

Propagate:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 1, n− |MLC∨L|)
= µ((MLC∨L;N ;U ; k;>))

Decide:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 1, n− |MLk+1|)
= µ((MLk+1;N ;U ; k;>))

Conflict:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D))

Skip:

µ((MLC∨L;N ;U ; k;D)) = (3n − 1− |U |, 0, |MLC∨L|)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D))

2.10. IMPLEMENTING CDCL 85

Resolve:

µ((MLC∨L;N ;U ; k;D ∨ ¬L)) = (3n − 1− |U |, 0, |MLC∨L|)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D ∨ C))

Backtrack:

µ((M1K
i+1M2;N ;U ; k;D ∨ L)) = (3n − 1− |U |, 0, |M1K

i+1M2|)
> (3n − 1− |U ∪ {D ∨ L}|, 1, n− |M1L

D∨L|)
= µ((M1L

D∨L;N ;U ∪ {D ∨ L}; i;>))

Recall that the strict inequation for Backtrack only holds with respect to a
reasonable strategy, see Lemma 2.9.7.

Another proof of termination is possible by considering the number of learned
clauses.

Theorem 2.9.16 (CDCL Termination: Learned Clauses). A CDCL run from
(ε;N ; ∅; 0;>) without rule Restart terminates and learns at most 2n clauses,
where n is the number of propositional variables in N .

Proof. Clauses are only learned at Backtrack applications. Without Restart, the
number of Backtrack applications is limited to 2n. By Proposition 2.9.6.8 any
infinite CDCL run contains infinitely many Backtrack applications.

The CDCL calculus is also incremental in the following sense: assume a
CDCL run on a clause set N results in a trail M that constitutes a model for
N . If satisfiability of N together with a new clause C needs to be tested, then
either M |= C and a satisfying model is found, or M |= ¬C. In the latter case
there is a minimal subsequence M ′L ⊆M such that M ′L |= ¬C. Now if L is a
decision literal then M is replaced with M ′ comp(L)C and CDCL continues with
from N ∪ {C} this state. If L is a propagated literal, then Conflict is applicable
to N ∪ {C} and CDCL continues from this state.

Note that the example problem from Figure 2.6 depicting a closed tableau
where the optimal closed tableau is exponentially smaller, will be solved by
CDCL without the exponential overhead. If closedness does not depend on the
Kj , K

′
j literals, then even after deciding (propagating) these literals and later

on the Li, L
′
i literals, the conflict clauses as well as the learned clauses will not

contain any Kj , K
′
j literal. Therefore one run through a Li, L

′
i subtree yields

the empty clause via CDCL.

2.10 Implementing CDCL

The performance of modern SAT solvers is sensitive to at least six compo-
nents [16]: (i) preprocessing [39], (ii) conflict-driven clause learning (CDCL) [84,

