1.4. ORDERINGS 17

1.4 Orderings

An ordering R is a binary relation on some set M. Depending on particular
properties such as

(reflexivity) Vo € M R(z,x)
(irreflexivity) V€ M —R(x,x)
(antisymmetry) Vaz,y € M (R(z,y) A R(y,x) = =1y)
(transitivity) Va,y,z € M (R(z,y) A R(y, z) = R(x, 2))
(totality) Va,y € M (R(z,y) vV R(y,x))

there are different types of orderings. The relation = is the identity relation
on M. The quantifier ¥ reads “for all”, and the boolean connectives A, V, and —
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reflexivity Va € M R(z, z) is a shorthand for “for all x € M the relation
R(x,x) holds”.

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as € or —. While
the former is assumed to be known from school math, the latter is
“explained” above. So, strictly speaking this book is neither self contained,
nor overall formal. For the concrete logics developed in subsequent chapters, I
will formally define — but here, where it is used to state properties needed to
eventually define the notion of an ordering, it remains informal. Although it is
possible to develop the overall content of this book in a completely formal style,
such an approach is typically impossible to read and comprehend. Since this
book is about teaching a general framework to eventually generate automated
reasoning procedures this would not be the right way to go. In particular, being
informal starts already with the use of natural language. In order to support
this “mixed” style, examples and exercises deepen the understanding and rule
out potential misconceptions.

Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A (partial) ordering = (or simply ordering) on
a set M, denoted (M,), is a reflexive, antisymmetric, and transitive binary
relation on M. It is a total ordering if it also satisfies the totality property.
A strict (partial) ordering > is a transitive and irreflexive binary relation on
M. A strict ordering is well-founded, if there is no infinite descending chain
mg = mq = Mg = ... where m; € M.

Given a strict partial order > on some set M, its respective partial order > is
constructed by adding the identities (> U =). If the partial order > extension of
some strict partial order > is total, then we call also > total. As an alternative,
a strict partial order > is total if it satisfies the strict totality axiom Vz,y €
M (x #y — (R(z,y)V R(y,z))). Given some ordering > the respective ordering
< is defined by a < b iff b > a.

18 CHAPTER 1. PRELIMINARIES

Example 1.4.2. The well-known relation < on N, where k& < [if there is a j
so that K+ j = [for k,I,j € N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M,), an element m € M is called minimal, if there is no element m’ € M so
that m = m’. An element m € M is called smallest, if m’ = m for all m' € M
different from m.

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a set M but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M.

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q € Q | 5 < ¢} the ordering < on M is total, has the minimal
and smallest element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multiset Ordering Extensions). Let
(My, 1) and (Ma, >=2) be two strict orderings. Their lezicographic combination
=lex= (=1, =2) on My x M> is defined as (mq,ms) = (m},mb) iff my =1 mj or
my = m) and mg >o mj.

Let (M, >) be a strict ordering. The multiset extension >, to multisets
over M is defined by S7 = Sa iff S1 # Sy and Vm € M [Sa(m) > Si(m) —
IAm’ € M (m' = mASi(m') > Sa(m'))].

The definition of the lexicographic ordering extensions can be expanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case the M; are alphabets,
say a-z, where a < b < ... < z. Then according to the above definition tiger <
tree.

Example 1.4.6 (Multiset Ordering). Consider the multiset extension of (N, >).
Then {2} >nu {1,1,1} because there is no element in {1,1,1} that is larger
than 2. As a border case, {2,1} >, {2} because there is no element that has
more occurrences in {2} compared to {2,1}. The other way round, 1 has more
occurrences in {2,1} than in {2} and there is no larger element to compensate

for it, so {2} Fmu {2,1}.

Proposition 1.4.7 (Properties of Lexicographic and Multiset Ordering Exten-
sions). Let (M,), (My,>1), and (Mz, >2) be orderings. Then

1.5. INDUCTION 19

1. >jex is an ordering on M; x Ms.

2. if (My,>1) and (Ma, =2) are well-founded so is >jex.
3. if (My,>1) and (Ma, =2) are total so is >jex.

4. > is an ordering on multisets over M.

5. if (M,) is well-founded so is > pyu1-

6. if (M,) is total so is >mul-

Please recall that multisets are finite.

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can

be constructed: b > ab > aab > It becomes well-founded if it is lexicograph-
ically combined with the length ordering, see Exercise 77.

Lemma 1.4.8 (Koénig’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (INV; T; T) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings ¥* over a finite alphabet 3. All letters of X are
contained in ¥* and if v and v are words out of ¥* so is the word uv, see
Section 1.2. This is an infinite set.

20 CHAPTER 1. PRELIMINARIES

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N; T; T), for the natural numbers it is 0
and for the set of strings it is the empty word. Now in order to prove a property
of an inductive set it is sufficient to prove it (i) for the minimal element(s) and
(ii) assuming the property for an arbitrary set of elements, to prove that it holds
for all elements that can be constructed “in one step” out those elements. This
is the principle of Noetherian Induction.

Theorem 1.5.2 (Noetherian Induction). Let (M, >) be a well-founded order-
ing, and let) be a predicate over elements of M. If for all m € M the implication

if Q(m’), for all m’ € M so that m = m/, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

Proof. Let X = {m € M | Q(m) does not hold}. Suppose, X # 0. Since (M, >
) is well-founded, X has a minimal element m;. Hence for all m’ € M with
m’ < my the property @Q(m’) holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for mq, hence Q(m1)
must be true so that m; cannot be in X - a contradiction. O

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to < in M and for those the predicate @) needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming @) for all elements strictly smaller than some m,
@ holds for m.

Now for context free grammars. Let G = (N, T, P,S) be a context-free
grammar (possibly infinite) and let ¢ be a property of T (the words over the
alphabet T' of terminal symbols of G).

¢ holds for all words w € L(G), whenever one can prove the following two
properties:

1. (base cases)
¢(w’) holds for each w’ € T* so that X ::=w’ is a rule in P.

2. (step cases)
If X = woXows ... w,Xpwy4q is in P with X; € N, w; € T, n > 0,
then for all w] € L(G, X;), whenever ¢(w}) holds for 0 < i < n, then also
g(wowywy . .. wpw!h wyy1) holds.

Here L(G, X;) C T* denotes the language generated by the grammar G from
the non-terminal Xj;.

Let G = (N, T, P,S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1.6. REWRITE SYSTEMS 21

1. (base cases)
f is well-defined on the words w’ € T* for each rule X ::= w’ in P.

2. (step cases)
If X = woXowy ... wp, Xpwneq isarulein P then f(wowjw ... waw,wyi1)
is well-defined, assuming that each of the f(w}) is well-defined.

(3

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 x 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (IV; T; T) and finishing either in a solution state (N; D; T)
or a fail state (N; T;L). The latter are called normal forms (see below) with
respect to the above rules, because no more rule is applicable to a solution state
(N; D;T) or a fail state (N; T;1).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M, —), where
M is a non-empty set and — C M x M is a binary relation on M. Figure 1.4
defines the needed notions for —.

-0 ={(a,a)|ae M} identity

il = i i+ 1-fold composition

=T = Ujso =" transitive closure

=% = U= = 2T U0 reflezive transitive closure
== ==Uu=0 reflezive closure

-1 ={(be)|c—b} inverse

& = U« symmetric closure

=T = ()" transitive symmetric closure
oF = (&) refl. trans. symmetric closure

Figure 1.4: Notation on —

For a rewrite system (M, —) consider a sequence of elements a; that are
pairwise connected by the symmetric closure, i.e., a; <> as < az... < ay,.
Then a; is called a peak in such a sequence, if actually a;—1 < a; — a;41.

Actually, in Definition 1.6.1 I overload the symbol — that has already
denoted logical implication, see Section 1.4, with a rewrite relation.

This overloading will remain throughout this book. The rule symbol

22 CHAPTER 1. PRELIMINARIES

= is only used on the meta level in this book, e.g., to define the Sudoku al-
gorithm on problem states, Section 1.1. Nevertheless, these meta rule systems
are also rewrite systems in the above sense. The rewrite symbol — is used on
the formula level inside a problem state. This will become clear when I turn to
more complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M,—) be a rewrite system. An element
a € M is reducible, if there is a b € M such that a — b. An element a € M is in
normal form (irreducible), if it is not reducible. An element ¢ € M is a normal
form of b, if b = ¢ and c is in normal form, denoted by ¢ = b). Two elements
b and c are joinable, if there is an a so that b —* a *< ¢, denoted by b | c.

Traditionally, ¢ = b] implies that the normal form of b is unique. However,
when defining logical calculi as abstract rewrite systems on states in subsequent
chapters, sometimes it is useful to write ¢ = b} even if ¢ is not unique. In this
case, ¢ is an arbitrary irreducible element obtained from reducing b.

Definition 1.6.3 (Properties of —). A relation — is called

Church-Rosser if b<* cimplies b | ¢

confluent if b ¢ a —* cimplies b | ¢

locally confluent if b <+ a — c implies b | ¢

terminating if there is no infinite descending chain by — by ...
normalizing if every b € A has a normal form

convergent if it is confluent and terminating

Lemma 1.6.4. If — is terminating, then it is normalizing.

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a, b, ¢} and the relation a — b,
b — a, and b — ¢. Then (M, —) is obviously not terminating, because
we can cycle between a and b. However, (M, —) is normalizing. The normal form
is ¢ for all elements of M. Similarly, there are rewrite systems that are locally

confluent, but not confluent, see Figure . In the context of termination the
property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(M, —):

(i) — has the Church-Rosser property.

(ii) — is confluent.

Proof. (i) = (ii): trivial.
(ii) = (i): by induction on the number of peaks in the derivation b <+* ¢. O

Lemma 1.6.6 (Newman’s Lemma : Confluence versus Local Confluence). Let
(M,—) be a terminating rewrite system. Then the following properties are
equivalent:

(i) — is confluent

1.6. REWRITE SYSTEMS 23

(ii) — is locally confluent

Proof. (i) = (ii): trivial.

(ii) = (i): Since — is terminating, it is a well-founded ordering (see Ex-
ercise ?7?). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all o’ € M with a = a’ and needs to be shown for a. Consider the confluence
property for a: b "<~ a —* c¢. If b = a or ¢ = a the proof is done. For otherwise,
the situation can be expanded to b *«— b’ <+ a — ¢ —* ¢ as shown in Figure 1.5.
By local confluence there is an a’ with ¥ —* a’ *< /. Now ¥/, ¢’ are strictly
smaller than a, they are confluent and hence can be rewritten to a single a”,

finishing the proof (see Figure 1.5). O
*
a c’! c
L.C.
* ok
b’ »a’ LH
ILH.
* * vk k vk
b »d ra’

Figure 1.5: Proof of (ii) = (i) of Newman’s Lemma 1.6.6

Lemma 1.6.7. If — is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b *+
a —* c¢. If — is confluent, then b —* d *< ¢ for some d € A. Since b and ¢ are
normal forms, both derivations must be empty, hence b —=° d % ¢, so b, ¢, and
d must be identical. O

Corollary 1.6.8. If — is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If — is normalizing and confluent, then b <+* ¢ if and only
if b} = cl.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b <* c. O

