UNIVERSITÄT DES SAARLANDES

MPI – Informatik Christoph Weidenbach

Lecture "Automated Reasoning" (Winter Term 2024/2025)

Final Examination

Name:

.....

Student Number:

Some notes:

• Things to do at the beginning:

Put your student card and identity card (or passport) on the table. Switch off mobile phones and any other electronic device. Whenever you use a new sheet of paper (including scratch paper), first write your name and student number on it.

• Things to do at the end:

Mark every problem that you have solved in the table below. Stay at your seat and wait until a supervisor staples and takes your examination text.

Note: Sheets that are accidentally taken out of the lecture room are invalid.

Sign here:

Good luck!

.....

Problem	1	2	3	4	5	6a	6b	6c	7	Σ
Answered?										
Points										

Problem 1 (First-Order Superposition Refutation) (8

Refute the below clause set using a KBO, all symbols have weight one and the precedence is $g \succ f \succ T \succ Q \succ R \succ a \succ b$.

- (1) $R(f(x,y),g(b)) \vee R(f(x,y),g(y))$ (2) $R(f(x,y),g(b)) \vee \neg Q(g(b))$
- (3) $T(y,g(x)) \lor \neg R(g(x), f(x,y))$ (4) $\neg R(f(x,y), g(b)) \lor R(g(b), f(x,y))$

(5)
$$\neg T(x, g(y)) \lor \neg R(g(y), x)$$

(f) $R(g(y), x) \lor Q(g(x))$ (f) $R(g(y), x) \lor Q(g(x))$

Problem 2 (SCL(FOL))

(6 points)

Refute the following clause set using SCL(FOL), starting with a trail $[P(a, b)^1]$, i.e., P(a, b) is decided to be true and all literals with less than 7 symbols may be considered.

(1)
$$P(x,y) \lor P(y,x)$$
 (2) $\neg P(x,y) \lor P(f(y,y),y)$

(3)
$$\neg P(x,y) \lor Q(g(y))$$
 (4) $\neg Q(g(x)) \lor P(f(y,y),y)$

(5)
$$\neg P(f(x,x),x) \lor \neg P(f(x,x),x)$$

Problem 3 (CDCL)

(7 points)

Use CDCL to decide satisfiability of the following clause set.

- (1) $\neg P_1 \lor P_2 \lor P_3$ (2) $\neg P_4 \lor P_1 \lor P_5$ (3) $P_4 \lor P_1 \lor P_5$ (4) $\neg P_5 \lor P_2$ (5) $\neg P_3 \lor P_5$ (6) $\neg P_1 \lor \neg P_2$ (7) $P_2 \lor P_3$
- (7) $\neg P_3 \lor P_1$

Problem 4 (Knuth Bendix Completion)

Apply completion $(\Rightarrow_{\text{KBC}})$ to the following set of equations with respect to a KBO where all signature symbols (and variables) have weight 1 and $f \succ g$ and x, y are variables.

$$E = \{f(x, x) \approx x, f(g(y), y) \approx g(y), g(g(x)) \approx g(x)\}$$

Problem 5 (Simplex)

(8 points)

Decide satisfiability of the following system of inequations using simplex

$$y \ge x + 2$$

$$2y \ge -x - 1$$

$$5y \le -x + 5$$

starting with equations and simple bounds

$$z_1 = y - x \qquad z_1 \ge 2$$
$$z_2 = 2y + x \qquad z_2 \ge -1$$
$$z_3 = 5y + x \qquad z_3 \le 5$$

where you propagate bounds in the order z_1, z_2, z_3 and select for pivoting first x, then y, and then the other variables in the above order.

Problem 6 (Conjectures) (2 + 2 + 2 = 6 points)

Which of the following statements are true or false? Provide a proof or a counter example.

- a) In Knuth-Bendix Completion, any critical pair of a rewrite rule $t \to s$ with itself can eventually be deleted.
- b) A simplex problem of the form $c_i \leq \sum a_{i,j} x_{i,j}$ where $0 \leq c_i$ for all c_i (and so no \geq) does always have a solution.
- c) First-order superposition can be turned (by choosing an appropriate ordering and selection strategy) into a decision procedure (it terminates) for any Horn clause set (Horn means at most one positive literal in a clause) where all positive literals in unit clauses (clauses with exactly one literal) are ground.

Problem 7 (KBC)

(4 points)

Let $E = \{t_i \approx s_i \mid 1 \leq i \leq n\}$ be a finite set of equation such that $\operatorname{vars}(t_i) = \operatorname{vars}(s_i)$ and all t_i , s_i are of the form $f(x_1, \ldots, x_n)$, where t_i , s_i may have different top function symbols, with $x_i < x_{i+1}$ for some total strict ordering < on the variables. Prove: KBC terminates on E resulting in a convergent system.