

Universität des Saarlandes FR Informatik

Weidenbach

November 07, 2024

Tutorials for "Automated Reasoning WS24/25" Exercise sheet 4

Exercise 4.1:

Let $\Sigma = (\{f, g, h, b, c\}, \emptyset)$ with g arity 2, f and h arity 1 and b and c constants. and let

 $t_1 = g(h(x), h(c)),$ $t_2 = g(x, x),$ $t_3 = g(b, f(x)),$ $t_4 = f(g(x, y)),$ $t_5 = h(g(x, c)).$

Determine for each $1 \le i < j \le 5$ whether t_i and t_j are incomparable or comparable (and if so, which term is larger) with respect to

- 1. a lexicographic path ordering with precedence $f \succ g \succ h \succ b \succ c$,
- 2. a Knuth-Bendix-ordering with precedence $h \succ f \succ g \succ b \succ c$, where h has weight 1 and all other symbols have weight 2.

Exercise 4.2:

Refute the following set N of clauses

both using KBO and LPO with ground superposition by only applying the inference rules Superposition Left and Factoring:

1. using KBO where all variables and signature symbols have weight 1 and $Q \succ P \succ f \succ g \succ b \succ a$,

2. using LPO with precedence $Q \succ P \succ f \succ g \succ b \succ a$.

Exercise 4.3:

Consider again the above clause set from Exercise 4.2. This time compute the model $N_{\mathcal{I}}$ both for KBO and LPO:

- 1. using KBO where all variables and signature symbols have weight 1 and $Q \succ P \succ f \succ g \succ b \succ a$. Compute $N_{\mathcal{I}}$, determine the minimal false clause, perform the respective ground superposition inference, add the result to N yielding N' and compute again $N'_{\mathcal{I}}$,
- 2. using LPO with precedence $Q \succ P \succ f \succ g \succ b \succ a$. Compute $N_{\mathcal{I}}$, determine the minimal false clause, perform the respective ground superposition inference, add the result to N yielding N' and compute again $N'_{\mathcal{I}}$.

It is not encouraged to prepare joint solutions, because we do not support joint exams.