

Universität des Saarlandes FR Informatik

Weidenbach

October 17, 2024

Tutorials for "Automated Reasoning WS24/25" Exercise sheet 1

Exercise 1.1:

Consider a strict ordering \prec on a set M and prove or refute by a counter-example:

- 1. if for any elements $m_1, m_2 \in M$ there is an element $m \in M$ so that $m_1 \prec m$ and $m_2 \prec m$ then \prec is total
- 2. if there exists an infinite ascending chain $m_0 \prec m_1 \prec m_2 \prec \ldots$ then \prec is not well-founded
- 3. if \prec is well-founded then \prec is total

Exercise 1.2:

Prove by induction that for any propositional formula the number of closing parentheses is equal to the number of opening parentheses (see Definition 2.1.1).

Exercise 1.3:

Determine which of the following formulas are valid/satisfiable/unsatisfiable using propositional semantics, i.e., the definition of \models :

1.
$$\neg (P \lor \neg (P \land Q))$$

2.
$$(P \lor Q) \to (P \land Q)$$

3.
$$\neg (P \rightarrow \neg P)$$

- 4. $(P \lor \neg Q) \land \neg (\neg P \to \neg Q)$
- 5. $\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$

It is not encouraged to prepare joint solutions, because we do not support joint exams.