
1

Finding Fair and Efficient Allocations

Siddharth Barman
Sanath Kumar Krishnamurthy
Rohit Vaish

Computing Pareto-Optimal and Almost
Envy-Free Allocations of Indivisible Goods

Jugal Garg
Aniket Murhekar

EC 2018

JAIR 2024

presented by Tim Göttlicher



2

Finding fair and efficient allocations



2

Finding fair and efficient allocations

indivisible goods



2

Finding fair and efficient allocations

indivisible goods

?



2

Finding fair and efficient allocations

indivisible goods

EF1



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1 ?



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO

Algorithm?



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO

Algorithm?

Maximize Nash welfare



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO

Algorithm?

Maximize Nash welfare
NP-hard

polynomial time?



2

Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO

Algorithm?

Maximize Nash welfare
NP-hard

polynomial time?pseudo-



3

EF1 – Envy-freeness up to one item



3

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
other bundle
without g

own bundle

agents good∀a, b ∃g



3

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
other bundle
without g

own bundle

agents good∀a, b ∃g

PO – Pareto-optimality



3

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
other bundle
without g

own bundle

agents good∀a, b ∃g

PO – Pareto-optimality

there is no feasible allocation y such that

∀a Va(ya) ≥ Va(xa)

Va(ya) > Va(xa)∃a

y dominates x



4

Market prices as a common denominator

Agents have different preferences

how to satisfy everyone at the same time?



4

Market prices as a common denominator

Agents have different preferences

Economics: coordination via markets

→ prices are the same for everyone

how to satisfy everyone at the same time?



4

Market prices as a common denominator

Agents have different preferences

Economics: coordination via markets

→ prices are the same for everyone

10 1

how to satisfy everyone at the same time?



4

Market prices as a common denominator

Agents have different preferences

need relationship between price and value

Economics: coordination via markets

→ prices are the same for everyone

10 1

how to satisfy everyone at the same time?



5

Maximum bang-per-buck allocation

utility
price

Bang-per-buck

vag
pg



5

Maximum bang-per-buck allocation

mbba = max
g

vag
pg

utility
price

Bang-per-buck

vag
pg

MBB – Maximum bang-per-buck



5

Maximum bang-per-buck allocation

mbba = max
g

vag
pg

utility
price

Bang-per-buck

vag
pg

MBB – Maximum bang-per-buck

MBB allocation
all agents are allocated only items that are MBB for them

vag
pg

= mbba∀a ∀g ∈ xa,



6

How to find a MBB allocation

utility g1 g2 g3 g4 g5

a

b

c

1 2 1 2 1

7 4 6 2 0

8 4 2 4 5

v



6

How to find a MBB allocation

utility g1 g2 g3 g4 g5

a

b

c

1 2 1 2 1

7 4 6 2 0

8 4 2 4 5

v

1. allocate item g to agent a with max va,g



6

How to find a MBB allocation

utility g1 g2 g3 g4 g5

a

b

c

1 2 1 2 1

7 4 6 2 0

8 4 2 4 5

price p 8 4 6 4 5

v

1. allocate item g to agent a with max va,g

2. assign prices p = va,g



6

How to find a MBB allocation

utility g1 g2 g3 g4 g5

a

b

c

1 2 1 2 1

7 4 6 2 0

8 4 2 4 5

price p 8 4 6 4 5

v
p g1 g2 g3 g4 g5

a

b

c

1
8

1

1 1

1 1

7
8

2
4

1 2
6

1
6

2
4

2
4

1
5

0
5

≤ 1
v

1. allocate item g to agent a with max va,g

2. assign prices p = va,g



6

How to find a MBB allocation

utility g1 g2 g3 g4 g5

a

b

c

1 2 1 2 1

7 4 6 2 0

8 4 2 4 5

price p 8 4 6 4 5

v
p g1 g2 g3 g4 g5

a

b

c

1
8

1

1 1

1 1

7
8

2
4

1 2
6

1
6

2
4

2
4

1
5

0
5

≤ 1

mbbc

v

1. allocate item g to agent a with max va,g

2. assign prices p = va,g



7

MBB bounds bundle utility to price

Linear utilitiesAssumption:

mbba = max
g

vag
pg

Va(y) ≤ mbbaP (y)

Va(y) =
∑
g

va,gyg

any bundle y

Lemma

va,g ≥ 0 pg > 0



7

MBB bounds bundle utility to price

Linear utilitiesAssumption: x is MBB allocationAssumption:

vag
pg

= mbba

∀a ∀g ∈ xa,

mbba = max
g

vag
pg

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa)

Va(y) =
∑
g

va,gyg

if x is MBB with prices P

any bundle y

Lemma

va,g ≥ 0 pg > 0



8

Complete MBB allocations are Pareto-Optimal

there is no feasible allocation y that dominates x

∀a Va(ya) ≥ Va(xa)

Vb(yb) > Vb(xb)∃b

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

MBB



8

Complete MBB allocations are Pareto-Optimal

there is no feasible allocation y that dominates x

∀a Va(ya) ≥ Va(xa)

Vb(yb) > Vb(xb)∃b

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

cannot exist: sum of prices would increase

MBB



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

2. On MBB goods

3. Budget exhausting



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

2. On MBB goods

3. Budget exhausting

allocation prices



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

allocation prices



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

allocation prices



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

allocation prices

PO



9

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

∀a
∑
g

xa,gpg = ea

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

allocation prices

PO



10

Equal budgets imply Envy-Freeness

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

- ∀a, P (xa) = e (equal budgets)



10

Equal budgets imply Envy-Freeness

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

- ∀a, P (xa) = e (equal budgets)



10

Equal budgets imply Envy-Freeness

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

- ∀a, P (xa) = e (equal budgets)

=⇒ ∀a, b Va(xa) ≥ Va(xb) (envy-free)



11

EF1 transferred to spending

equal budgets =⇒ EF



11

EF1 transferred to spending

equal budgets =⇒ EF

not possible in indivisible goods



11

EF1 transferred to spending

equal budgets =⇒ EF

not possible in indivisible goods

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
agents good∀a, b ∃g



11

EF1 transferred to spending

equal budgets =⇒ EF

not possible in indivisible goods

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
agents good∀a, b ∃g transfer to budgets



11

EF1 transferred to spending

equal budgets =⇒ EF

not possible in indivisible goods

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
agents good∀a, b ∃g

pEF1 – Price envy-freeness up to one item

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

transfer to budgets



12

pEF1 implies EF1 on MBB allocation

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

P (xa) ≥ P (xb \ g) (pEF1)
∀a, b ∃g-



12

pEF1 implies EF1 on MBB allocation

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

P (xa) ≥ P (xb \ g) (pEF1)
∀a, b ∃g-



12

pEF1 implies EF1 on MBB allocation

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

P (xa) ≥ P (xb \ g) (pEF1)
∀a, b ∃g-

=⇒ Va(xa) ≥ Va(xb \ g) (EF1)



13

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

PO



13

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

PO

pEF1



13

(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

PO

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

pEF1

EF1



14

Overview

Complete MBB allocation =⇒ Pareto optimal

MBB + pEF1 =⇒ EF1



14

Overview

Complete MBB allocation =⇒ Pareto optimal

MBB + pEF1 =⇒ EF1

initial MBB allocation

pEF1

maintain MBB swap items, change prices

Algorithm



15

Algorithm ideas

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g



15

Algorithm ideas

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)



15

Algorithm ideas

Pmin

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)

pg



15

Algorithm ideas

Pmin

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)

pg

increase Pmin, reduce prices progress towards pEF1



15

Algorithm ideas

Pmin

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)

pg

increase Pmin, reduce prices

swap items to least spender

progress towards pEF1



15

Algorithm ideas

Pmin

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)

pg

increase Pmin, reduce prices

swap items to least spender

progress towards pEF1

xa ⊆ MBBa∀amaintain



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

allocated

max bang-per-buck

agent
item



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

Least Spender
Violator

allocated

max bang-per-buck

agent
item



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck

agent
item



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck
Swaps along MBB edges



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck
Swaps along MBB edges



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck
Swaps along MBB edges



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck
Swaps along MBB edges



16

Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck

No violators left =⇒ pEF1

Swaps along MBB edges



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

Swap component
can swap towards least spender



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

Swap component
can swap towards least spender

mbb = 2



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

Swap component
can swap towards least spender

mbb = 2

v = 16



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

Swap component
can swap towards least spender

mbb = 2

v = 16

v = 2



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

mbb = 2

→ grows swap component

v = 16

v = 2



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

mbb = 2

→ grows swap component

v = 16

v = 2

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

16

102

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

mbb = 2

→ grows swap component

v = 16

v = 2

below would violate MBB allocation

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

8

51

2

8

Least Spender

Violator

16

102

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

mbb = 2

→ grows swap component

v = 16

v = 2

below would violate MBB allocation

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

8

51

2

8

Least Spender

Violator

16

102

decrease prices to match max-bang-per-buck

bang-per-buck has increased!

Swap component
can swap towards least spender

→ grows swap component



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

8

51

2

8

Least Spender

Violator

decrease prices to match max-bang-per-buck

bang-per-buck has increased!

new swap path created

Swap component
can swap towards least spender

→ grows swap component



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

8

51

2

8

Least Spender

Violator

decrease prices to match max-bang-per-buck

bang-per-buck has increased!

new swap path created

Swap component
can swap towards least spender

→ grows swap component



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

8

51

2

8

Least Spender

Violator

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

→ grows swap component



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

Least Spender

Violator

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

6.4

41

→ grows swap component

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g



17

Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

6.4

41

→ grows swap component

Least Spender
αa,g =

va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g



18

Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component



18

Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component

additional constraint:
budgets should not drop below LS Pmin



18

Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component

additional constraint:
budgets should not drop below LS

multiply outside prices by max(α, β)

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component

Pmin



18

Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component

additional constraint:
budgets should not drop below LS

multiply outside prices by max(α, β)

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component

Violator

LS

Pmin



18

Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component

additional constraint:
budgets should not drop below LS

multiply outside prices by max(α, β)

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component

LS

Violator
LS

Pmin



19

Algorithm outline

x, p := initial complete MBB allocation

while pEF1 is violated

if swap path from violator to LS exists

perform one swap from violator

else

γ := max(α, β)

grow component

for g ∈ xa for a ̸∈ S

pg := γpg

decrease outside prices



19

Algorithm outline

x, p := initial complete MBB allocation

while pEF1 is violated

if swap path from violator to LS exists

perform one swap from violator

else

γ := max(α, β)

grow component

for g ∈ xa for a ̸∈ S

pg := γpg

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component
decrease outside prices



20

Results

Given any fair division instance with additive valuations,
an allocation that is EF1 and PO can be found in
O(poly(m,n, vmax)) time.

For additive valuations, there exists a polynomial-time
1.45-approximation algorithm for the Nash social welfare
maximization problem



21

Value increases every time an agent becomes LS again

case 1

Va(ya)Va(xa) <

LS LS LS

...

gains a good

does not lose
any good



21

Value increases every time an agent becomes LS again

case 1

Va(ya)Va(xa) <

case 2
LS LS

...

loses a good

...

LS LS LS

...

gains a good

does not lose
any good

Violator

does not lose
any good



22

Number of steps with same LS is bounded


