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Finding fair and efficient allocations

indivisible goods

Envy-free
up to one item

EF1

Pareto-optimal

PO

Algorithm?

Maximize Nash welfare
NP-hard

polynomial time?pseudo-
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EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
other bundle
without g

own bundle

agents good∀a, b ∃g

PO – Pareto-optimality

there is no feasible allocation y such that

∀a Va(ya) ≥ Va(xa)

Va(ya) > Va(xa)∃a

y dominates x
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Market prices as a common denominator

Agents have different preferences

need relationship between price and value

Economics: coordination via markets

→ prices are the same for everyone

10 1

how to satisfy everyone at the same time?
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Maximum bang-per-buck allocation

mbba = max
g

vag
pg

utility
price

Bang-per-buck

vag
pg

MBB – Maximum bang-per-buck

MBB allocation
all agents are allocated only items that are MBB for them

vag
pg

= mbba∀a ∀g ∈ xa,
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How to find a MBB allocation

utility g1 g2 g3 g4 g5
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b
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1 2 1 2 1
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4
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5
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mbbc

v

1. allocate item g to agent a with max va,g

2. assign prices p = va,g
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MBB bounds bundle utility to price

Linear utilitiesAssumption: x is MBB allocationAssumption:

vag
pg

= mbba

∀a ∀g ∈ xa,

mbba = max
g

vag
pg

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa)

Va(y) =
∑
g

va,gyg

if x is MBB with prices P

any bundle y

Lemma

va,g ≥ 0 pg > 0
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Complete MBB allocations are Pareto-Optimal
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Complete MBB allocations are Pareto-Optimal

there is no feasible allocation y that dominates x

∀a Va(ya) ≥ Va(xa)

Vb(yb) > Vb(xb)∃b

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

cannot exist: sum of prices would increase

MBB
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(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

∀a
∑
g

xa,gpg = ea

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

allocation prices

PO
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Equal budgets imply Envy-Freeness

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

- ∀a, P (xa) = e (equal budgets)

=⇒ ∀a, b Va(xa) ≥ Va(xb) (envy-free)
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EF1 transferred to spending

equal budgets =⇒ EF

not possible in indivisible goods

EF1 – Envy-freeness up to one item

Va(xa) ≥ Va(xb \ g)
agents good∀a, b ∃g

pEF1 – Price envy-freeness up to one item

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

transfer to budgets
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pEF1 implies EF1 on MBB allocation

Va(y) ≤ mbbaP (y)

Va(xa) = mbbaP (xa) if x is MBB with prices P

any bundle y

Lemma

- x is MBB allocationAssume

P (xa) ≥ P (xb \ g) (pEF1)
∀a, b ∃g-

=⇒ Va(xa) ≥ Va(xb \ g) (EF1)
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(x,p) is a Fisher market equilibrium if it is

1. Market clearing

∀g
∑
a

xa,g = 1

2. On MBB goods

3. Budget exhausting

= max
g

vag
pg

vag
pg

= mbba∀a ∀g ∈ xa,

PO

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

pEF1

EF1



14

Overview

Complete MBB allocation =⇒ Pareto optimal

MBB + pEF1 =⇒ EF1



14

Overview

Complete MBB allocation =⇒ Pareto optimal

MBB + pEF1 =⇒ EF1

initial MBB allocation

pEF1

maintain MBB swap items, change prices

Algorithm
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Algorithm ideas

Pmin

pEF1

P (xa) ≥ P (xb \ g)
agents good∀a, b ∃g

Pmin ≥ P (xb \ g)

pg

increase Pmin, reduce prices

swap items to least spender

progress towards pEF1

xa ⊆ MBBa∀amaintain
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Allocation and bang-per-buck as a graph

16

108
2

2

8

8

10

∀g, P (xb \ g) > PminP (xa) = Pmin

Least Spender
Violator

allocated

max bang-per-buck

No violators left =⇒ pEF1

Swaps along MBB edges
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Lower prices to create new swap paths

What if no swap paths from Least Spender to Violator exists?

2

8

decrease prices to match max-bang-per-buck

Swap component
can swap towards least spender

6.4

41

→ grows swap component

Least Spender
αa,g =

va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

multiply by maxαa,g
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Least spender’s budget does not decrease

budget decreased =⇒ agent was not LS

not in swap component

additional constraint:
budgets should not drop below LS

multiply outside prices by max(α, β)

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component

LS

Violator
LS

Pmin
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Algorithm outline

x, p := initial complete MBB allocation

while pEF1 is violated

if swap path from violator to LS exists

perform one swap from violator

else

γ := max(α, β)

grow component

for g ∈ xa for a ̸∈ S

pg := γpg

decrease outside prices
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Algorithm outline

x, p := initial complete MBB allocation

while pEF1 is violated

if swap path from violator to LS exists

perform one swap from violator

else

γ := max(α, β)

grow component

for g ∈ xa for a ̸∈ S

pg := γpg

αa,g =
va,g/pg
mbba

< 1

a ∈ swap component
g ∈ outside bundle

βb =
P (xb)

Pmin
< 1

b ̸∈ swap component
decrease outside prices
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Results

Given any fair division instance with additive valuations,
an allocation that is EF1 and PO can be found in
O(poly(m,n, vmax)) time.

For additive valuations, there exists a polynomial-time
1.45-approximation algorithm for the Nash social welfare
maximization problem
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Value increases every time an agent becomes LS again

case 1

Va(ya)Va(xa) <

case 2
LS LS

...

loses a good

...

LS LS LS

...

gains a good

does not lose
any good

Violator

does not lose
any good
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Number of steps with same LS is bounded


