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Presentation outline
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Fairness has two main approaches

Comparative

define 
bundles

agents 
compare 
bundles

In absolute terms

observe 
items

define 
threshold

bundle 
meets the 
threshold?

EF, EF1, EFX, EEFX(!) PROP, MMS, PROP1, MXS(!)
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Our setting is indivisible goods

non-zero positive 
valuations 

∀i ϵ [n], g ϵ [m]: 
vi(g) > 0

additive 
valuations 

∀i ϵ [n], S ⊆ [m]: 
vi(S) = ∑s∈Svi(s)
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non-zero positive 
valuations 

∀i ϵ [n], g ϵ [m]: 
vi(g) > 0



Relaxations of EF have their problems

EF does not always exist EFX might not always existEF1 is not that fair
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➢ NP hard 
(partition 
problem)

➢ NP hard 
➢ exists for 

3 agents



A new relaxation by removing epistemic access

What knowledge does the agent have: 

- agents own bundle 
- amount of agents 
- all items 
- bundles of other agents

➢ The agent does not know what the other bundles look like anymore

Excursion: 

● epistemic:  
relating to knowledge 

● epistemic access: 
access to knowledge 
about a situation or 
reality 
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Is this allocation EFX?

3020 153

20 15 8 6

2

3

30 11 9 5 1
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Remove Red’s epistemic access

3020 153

20 15 8 6

2

3

30 11 9 5 1
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15

Remove Red’s epistemic access

3020 153 2

9

30 11 9 5 1

20 8 6 3



EEFX is fair and can be compute in polynomial time
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polynomial 
timeintuitively fair

always exists

EEFX

EF1
EF

+ privacy 
sensitive



X needs an EEFX certificate for each agent to be EEFX

- set of agents [n] 
- set of goods [m] 
- allocation X = (X1,X2,...,Xn)

X is EEFX 
⇔ 

∀ i ∈ [n] : ∃ Y = (Y1,...,Yn) :  
● Yi = Xi  
● i is EFX satisfied with Y

Y
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Red’s bundle is such an EEFX certificate

3020 153 2

12

30 11 9 5 1

20 8 6 3



There is a polynomial time algorithm to compute EEFX

Input: instance I = ([n],[m], {vi}i∈[n]) 
Output: allocation X (EEFX) 

1. I’ = ORDER(I) 
2. X’ <- ENVY_CYCLE_ELIMINATION(I’) 
3. L <- PICKING_SEQUENCE(X’,I’) 
4. X <- PICK(I,L) 
5. return X
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The instance I

3020 153

20 15 8 6

2

3

30 11 9 5 1
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ORDER(I)

320 1530

20 15 8 6

2

3

30 11 9 5 1
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ENVY_CYCLE_ELIMINATION(I’)

320 1530

20 15 8 6

2

3

30 11 9 5 1
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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ENVY_CYCLE_ELIMINATION(I’)
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This allocation is EFX!

320 1530

20 15 8 6

2

3

30 11 9 5 1
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320 1530

20 15 8 6

2

3

30 11 9 5 1
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PICKING_SEQUENCE(X’,I’)
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PICK(I,L)
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20 15 8 6

2

3

30 11 9 5 1
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PICK(I,L)
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20 15 8 6
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30 11 9 5 1
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PICK(I,L)
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PICK(I,L)
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PICK(I,L)
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PICK(I,L)
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The allocation X

3020 153

20 15 8 6

2

3

30 11 9 5 1
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The algorithm in detail

input: instance I = ([n],[m], {vi}i∈[n])

Step 1: 
create I’ 

● enumerate g1,g2,…,gm 
● define vi’(gj) such that gj 

is assigned the  j 
highest value out of all 
the values of vi

Step 2: 
create X’ 

● run envy cycle 
elimination on I’

Step 3: 
create L 

● L = [L1,L2,...,Lm] 
● Lj is the owner of gj in X’

draft items in I with picking order L
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This algorithm is efficient!!

Step 1: 
create I’ 

● enumerate g1,g2,…,gm 
● define vi’(gj) such that gj 

is assigned the  j 
highest value out of all 
the values of vi

Step 2: 
create X’ 

● run envy cycle 
elimination on I’

Step 3: 
create L 

● L = [L1,L2,...,Lm] 
● Lj is the owner of gj in X’

draft items in I with picking order L

O(m
)

O(m
)

O(m
)
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Proof sketch	

❖ Lemma 1 (Plaut and Roughgarden [2020]) 
➢ X’ is EFX 

❖ Lemma 2 
➢ ∀i ∈ [n]: ∃ πi: [m]→[m] : πi is a bijection 

■ ∀g ∈  Xi’ : πi(g) ∈ Xi and vi(πi(g)) ≥ vi’(g) (Value does not decrease) 

■ ∀g ∉ Xi’ : πi(g) ∉ Xi and vi(πi(g)) ≤ vi’(g) (Value does not increase) 

❖ Lemma 3 
➢ X (the output) is EEFX
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πi translates goods in X’ into goods in X

gj ∈ Xi’ 

πi(gj) is the item picked at 
time step j of the PICK step

gj ∉ Xi’ 

for the kth item ignoring 
items picked by agent i: 

πi(gj) is the k most valuable 
item according to i ignoring 

items picked by agent i
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gj ∈ Xi’

3020 153

20 15 8 6

2

3

30 11 9 5 1
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πi(g3) g3

g1 g2 g3 g4 g5



g
j
 ∉ X

i
’ 

3020 153

20 15 8 6

2

3

30 11 9 5 1
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k = 1 k = 2 k = 3



The proof of Lemma 2
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Goal: 
∀i ∈ [n]: ∃ πi: [m]→[m] : πi is a bijection 

■ ∀g ∈  Xi’ : πi(g) ∈ Xi and vi(πi(g)) ≥ vi’(g) 
(Value does not decrease) 

■ ∀g ∉ Xi’ : πi(g) ∉ Xi and vi(πi(g)) ≤ vi’(g) 
(Value does not increase)

σi : [m] → [m] 
- vi(gσi(j)) = vi’(gj) 
- Random enumeration: g1,g2,...,gm 
- Ordered enumeration: 

gσi(1),...,gσi(m)

Set of agent i’s j 
highest valued 

items: 
Gi

j={gσi(1),...,gσi(j)}

gj ∈ Xi’ 

item picked in step j of the 
algorithm

gj ∉ Xi’ 

for the kth item ignoring 
items picked by agent i: k 

most valuable item 
according to i ignoring items 

picked by agent i



The Proof of Lemma 3
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Yi = (Yi
1,...,Yi

n) 

Yi
j = {πi(g) : g ∈ Xj’} 

g* ∈ Yi
j  s.t. g* = argming πi(g)

Claim: 

Yi
 is an EEFX certificate for agent i 
1. Yi

i = Xi 
2. agent i is EFX satisfied

vi(Yi
i) ≥ vi(Yi

j \ {πi(g*)})  ∀j ∈ [m] 

(1) vi(Yi
i) ≥ vi’(Xi’) 

(1) vi’(Xi’) ≥ vi’(Xj’ \ {g*}) 

(1) vi’(Xj’ \ {g*}) ≥ vi(Yi
j \ {πi(g*)})



MMS implies EEFX

- MMS property: ∀i : vi(Xi) ≥ maxY minj vi(Yj) 
- “Each agent gets at least the value that is equal to the maximum value of the 

bundle they receive among all allocations in which they receive their least 
favourite bundle.”
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Construct a possible EEFX certificate Y
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Y = (Y1,...,Yn) 

● Yi = Xi  
● rY,i is lexicograhpically minimum

rY,i = (r1
Y,i,...,rn-1

Y,i) 

● rt
Y,i ≥ rt+1

Y,i  ∀t ∈ [n-2] 
● the entries are the values 

vi(Yj) for all j  ∈ [n] \ {i}



Assume Y is not an EEFX certificate

agent i is not EFX-satisfied in Y 

vi(Yi) < vi(Yj1 ) − vi(g) 

for some other agent j1 and item g

agent i strictly prefers every other 
bundle

agent i does not prefer at least one of 
the bundlesOR
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Agent i does not strictly prefer every other bundle

agent i agent j1 agent n agent j2 45



Agent i does not strictly prefer every other bundle

This is 
lexicographically 
smaller than Y

agent i agent j1 agent n agent j2 46



Agent i strictly prefers every other bundle

agent i agent j1 agent n agent j2 47



Agent i strictly prefers every other bundle
The MMSi 
value is 

higher than 
anticipated

agent i agent j1 agent n agent j2 48



EEFX fits nicely into the chain of implications

EF

MMS EFX EF1

EEFX

MXS

PROP1

Threshold = 
min value in 

all EFX 
allocations

Proportionality 
up to one item
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The algorithm is a “short-cut” around a NP-hard problems

checking if a given 
allocation is EEFX is 

NP-hard

calculating the MXS 
threshold is NP-hard

computing an EEFX/
MXS allocation from 
any instance is O(m)
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Take home messages

EEFX is a new fairness 
concept that solves previous 

issues of EF relaxations

polynomial 
timeintuitively fair

always exists

EEFX

EF1
EF

+ privacy 
sensitive

MMS and EFX imply EEFX

MXS is trivially computed by 
the same algorithm
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