Existence and Computation of Epistemic EFX Allocations

Ioannis Caragiannis Aarhus University

Nidhi Rathi MPI-INF

Giovanna Varricchio Goethe University Frankfurt

Jugal Garg University of Illinois

Eklavya Sharma University of Illinois

by Naya Rudolph (she/her)

Presentation outline

- Background information and setting
- Issues with EF, EFX, EF1
- Epistemic EFX
	- the idea
	- definition
	- algorithm
	- analysis
- MMS implies EEFX
- Take home messages

Fairness has two main approaches

Our setting is indivisible goods

Relaxations of EF have their problems

EF does not always exist EF1 is not that fair EFX might not always exist

 $>$ NP hard (partition problem)

 $>$ NP hard $>$ exists for 3 agents

A new relaxation by removing epistemic access

What knowledge does the agent have:

- agents own bundle
- amount of agents
- all items
- bundles of other agents

- epistemic: relating to knowledge
- epistemic access: access to knowledge about a situation or reality

 \geq The agent does not know what the other bundles look like anymore

Is this allocation EFX?

Remove Red's epistemic access

Remove Red's epistemic access

EEFX is fair and can be compute in polynomial time

X needs an EEFX certificate for each agent to be EEFX

- set of agents [n]
- set of goods [m]
- allocation $X = (X_1, X_2, \ldots, X_n)$

Red's bundle is such an EEFX certificate

There is a polynomial time algorithm to compute EEFX

Input: instance $I = ([n],[m], \{v_i\}_{i \in [n]})$

Output: allocation X (EEFX)

- 1. $\mathsf{I}' = \mathsf{ORDER}(\mathsf{I})$
- 2. X' <- ENVY_CYCLE_ELIMINATION(I')
- 3. L <- PICKING_SEQUENCE(X',I')
- 4. $X \leq$ PICK(I,L)
- 5. return X

The instance I

ORDER(I) \checkmark $\mathbf \cup$ \mathbf{v} $U = U$ 2 $30 \leftarrow 20$ 15 $\longrightarrow 3$ $\frac{1}{\sqrt{2}}$ 30 11 9 5 1 3 20 15 8 6

20 15 3

This allocation is EFX!

PICKING_SEQUENCE(X',I')

The allocation X

The algorithm in detail

input: instance $I = ([n], [m], \{v_i\}_{i \in [n]})$

draft items in I with picking order L

This algorithm is efficient!!

draft items in I with picking order L

Proof sketch

- ❖ Lemma 1 (Plaut and Roughgarden [2020])
	- $>$ X' is FFX
- ❖ Lemma 2
	- \rightharpoonup ∀i ∈ [n]: \exists π_i: [m]→[m] : π_i is a bijection
		- **■** $\forall g \in X_i': \pi_i(g) \in X_i$ and $v_i(\pi_i(g)) \ge v_i'(g)$ (Value does not decrease)
		- **■** $\forall g \notin X_i': \pi_i(g) \notin X_i$ and $v_i(\pi_i(g)) \le v_i'(g)$ (Value does not increase)
- ❖ Lemma 3
	- \triangleright X (the output) is EEFX

π_{i} translates goods in X' into goods in X

 $g_j \in X'_i$ $\pi_{\mathsf{i}}(\mathsf{g}_{\mathsf{j}})$ is the item picked at time step j of the PICK step

 $g_j \notin X'_i$

for the kth item ignoring items picked by agent i: $\pi_i(g_j)$ is the k most valuable item according to i ignoring items picked by agent i

The proof of Lemma 2

The Proof of Lemma 3

 $Y^i = (Y^i_1, ..., Y^i_n)$

 $Y^i_{j} = \{\pi_i(g) : g \in X^i_{j}\}$

g* ∈ Yⁱ_j s.t. g* = argmin_g π_i(g)

Claim:

Yi is an EEFX certificate for agent i

- 1. $Y_i = X_i$
- 2. agent i is EFX satisfied

 $v_i(Y_i) \ge v_i(Y_i \setminus {\{\pi_i(g^*)\}}) \ \forall j \in [m]$

(1) $v_i'(X_i') \ge v_i'(X_i' \setminus \{g^*\})$

(1) $V_i'(X_i' \setminus \{g^*\}) \geq V_i(Y_i' \setminus \{\pi_i(g^*)\})$

(1) $v_i(Y_i) \ge v_i'(X_i')$

MMS implies EEFX

- MMS property: ∀i : $v_i(X_i) \ge max_Y min_i v_i(Y_j)$
- "Each agent gets at least the value that is equal to the maximum value of the bundle they receive among all allocations in which they receive their least favourite bundle."

Construct a possible EEFX certificate Y

 $Y = (Y_1,...,Y_n)$

- \bullet $Y_i = X_i$
- \bullet r^{Y,i} is lexicograhpically minimum

 $r^{Y,i} = (r_1^{Y,i},...,r_{n-1}^{Y,i})$

$$
\bullet \quad r_t^{\gamma,i} \geq r_{t+1}^{\gamma,i} \ \forall t \in [n-2]
$$

 \bullet the entries are the values $v_i(Y_j)$ for all $j \in [n] \setminus \{i\}$

Assume Y is not an EEFX certificate

agent i is not EFX-satisfied in Y

 $v_i(Y_i) < v_i(Y_{j1}) - v_i(g)$

for some other agent j1 and item g

agent i does not prefer at least one of OR example all discussed and prefer and prefer

Agent i does not strictly prefer every other bundle

Agent i does not strictly prefer every other bundle

Agent i strictly prefers every other bundle

Agent i strictly prefers every other bundle

EEFX fits nicely into the chain of implications

The algorithm is a "short-cut" around a NP-hard problems

Take home messages

MMS and EFX imply EEFX

MXS is trivially computed by the same algorithm