Existence and Computation of Epistemic EFX Allocations

Ioannis Caragiannis Aarhus University

Nidhi Rathi MPI-INF Giovanna Varricchio Goethe University Frankfurt

Jugal Garg University of Illinois Eklavya Sharma University of Illinois

by Naya Rudolph (she/her)

Presentation outline

- Background information and setting
- Issues with EF, EFX, EF1
- Epistemic EFX
 - \circ the idea
 - \circ definition
 - algorithm
 - \circ analysis
- MMS implies EEFX
- Take home messages

Fairness has two main approaches

Our setting is indivisible goods

Relaxations of EF have their problems

EF does not always exist

EF1 is not that fair EFX might not always exist

NP hard
 (partition problem)

NP hard
exists for 3 agents

A new relaxation by removing epistemic access

What knowledge does the agent have:

- agents own bundle
- amount of agents
- all items
- bundles of other agents_

- epistemic: relating to knowledge
- epistemic access: access to knowledge about a situation or reality

> The agent does not know what the other bundles look like anymore

Is this allocation EFX?

Remove Red's epistemic access

Remove Red's epistemic access

EEFX is fair and can be compute in polynomial time

X needs an EEFX certificate for each agent to be EEFX

- set of agents [n]
- set of goods [m]
- allocation $X = (X_1, X_2, \dots, X_n)$

Red's bundle is such an EEFX certificate

There is a polynomial time algorithm to compute EEFX

Input: instance I = ([n],[m], $\{v_i\}_{i \in [n]}$)

Output: allocation X (EEFX)

- 1. I' = ORDER(I)
- 2. X' <- ENVY_CYCLE_ELIMINATION(I')
- 3. L <- PICKING_SEQUENCE(X',I')
- 4. X <- PICK(I,L)
- 5. return X

The instance I

|--|--|--|

2

This allocation is EFX!

PICKING_SEQUENCE(X',I')

The allocation X

The algorithm in detail

input: instance I = ([n],[m], $\{v_i\}_{i \in [n]}$)

draft items in I with picking order L

This algorithm is efficient!!

) draft items in I with picking order L

Proof sketch

- Lemma 1 (Plaut and Roughgarden [2020])
 - > X' is EFX
- Lemma 2
 - $\succ \quad \forall i \in [n] : \exists \ \pi_i : [m] {\rightarrow} [m] : \pi_i \text{ is a bijection}$
 - $\forall g \in X_i': \pi_i(g) \in X_i \text{ and } v_i(\pi_i(g)) \geq v_i'(g) \text{ (Value does not decrease)}$
 - $\forall g \notin X_i' : \pi_i(g) \notin X_i \text{ and } v_i(\pi_i(g)) \leq v_i'(g) \text{ (Value does not increase)}$
- Lemma 3
 - ➢ X (the output) is EEFX

π_i translates goods in X' into goods in X

 $g_j \in X_i'$ $\pi_i(g_j)$ is the item picked at time step j of the PICK step

 $g_j \not\in X_i$ '

for the kth item ignoring items picked by agent i: $\pi_i(g_j)$ is the k most valuable item according to i ignoring items picked by agent i

The proof of Lemma 2

$ \begin{array}{l} \mbox{Goal:} \\ \forall i \in [n]: \ \exists \ \pi_i: \ [m] \rightarrow [m]: \ \pi_i \ is \ a \ bijection \\ \hline \forall g \in \ X_i': \ \pi_i(g) \in X_i \ and \ v_i(\pi_i(g)) \geq v_i'(g) \\ (Value \ does \ not \ decrease) \\ \hline \forall g \not\in \ X_i': \ \pi_i(g) \not\in \ X_i \ and \ v_i(\pi_i(g)) \leq v_i'(g) \\ (Value \ does \ not \ increase) \end{array} $		g _j ∈ X _i ' item picked in step j of the algorithm
Set of agent i's j highest valued items: G _i j={g _{σi(1)} ,,g _{σi(j)} }	$ \begin{split} \sigma_i &: [m] \rightarrow [m] \\ &- v_i(g_{\sigma i(j)}) = v_i'(g_j) \\ &- \text{ Random enumeration: } g_1, g_2, \dots, g_m \\ &- \text{ Ordered enumeration: } \\ & g_{\sigma i(1)}, \dots, g_{\sigma i(m)} \end{split} $	g _j ∉ X _i ' for the kth item ignoring items picked by agent i: k most valuable item according to i ignoring items picked by agent i

(1) $v'_i(X'_i \setminus \{g^*\}) \ge v_i(Y'_i \setminus \{\pi_i(g^*)\})$

(1) $v'_i(X'_i) \ge v'_i(X'_i \setminus \{g^*\})$

(1) $V_i(Y_i) \ge V_i'(X_i')$

 $v_i(Y^i_i) \geq v_i(Y^i_i \setminus \{\pi_i(g^*)\}) \ \forall j \in [m]$

 $Y_{i}^{i} = {\pi_{i}(g) : g \in X_{i}^{'}}$ $g^* \in Y_i^i$ s.t. $g^* = argmin_a \pi_i(g)$

 $Y^{i} = (Y^{i}_{1}, \dots, Y^{i}_{n})$

The Proof of Lemma 3

Claim: Yⁱ is an EEFX certificate for agent i 1. $Y_{i_i}^i = X_{i_i}$ 2. agent i is EFX satisfied

MMS implies EEFX

- MMS property: $\forall i : v_i(X_i) \ge \max_Y \min_i v_i(Y_i)$
- "Each agent gets at least the value that is equal to the maximum value of the bundle they receive among all allocations in which they receive their least favourite bundle."

Construct a possible EEFX certificate Y

 $Y = (Y_1, \dots, Y_n)$

- $Y_i = X_i$
- r^{Y,i} is lexicograppically minimum

 $\mathbf{r}^{Y,i} = (\mathbf{r}_1^{Y,i},...,\mathbf{r}_{n-1}^{Y,i})$

•
$$r_t^{Y,i} \ge r_{t+1}^{Y,i} \quad \forall t \in [n-2]$$

• the entries are the values $v_i(Y_i)$ for all $j \in [n] \setminus \{i\}$

Assume Y is not an EEFX certificate

agent i is not EFX-satisfied in Y

 $v_i(Y_i) < v_i(Y_{j1}) - v_i(g)$

for some other agent j1 and item g

agent i does not prefer at least one of the bundles

Agent i does not strictly prefer every other bundle

Agent i does not strictly prefer every other bundle

Agent i strictly prefers every other bundle

Agent i strictly prefers every other bundle

EEFX fits nicely into the chain of implications

The algorithm is a "short-cut" around a NP-hard problems

MMS and EFX imply EEFX

MXS is trivially computed by the same algorithm