

How To Cut Your Cake ... Approximately

Paper: Fair and Efficient Cake Division with Connected Pieces (WINE 2019)

Authors: E R Arunachaleswaran, S Barman, R Kumar, and N Rathi

Speaker : Shreyas Srinivas May 28, 2024

CISPA Helmholtz Center for Information Security

Understanding the Problem

Image by jemastock on Freepik

A Computer Scientist's Cake

- In Mathspeak : $[0,1] \subset \mathbb{R}$
- Currently unallocated

- In Mathspeak : $[0,1] \subset \mathbb{R}$
- Currently unallocated

There are *n* Agents!

The Agents love Cake!

The Agents love Cake!

Q Y $v_r: \mathcal{I}[0,1] \mapsto \mathbb{R}$

$\mathbf{V}_m: \mathcal{I}[0,1] \mapsto \mathbb{R}$

Say Hi to Agent Magenta!

- Non-negative
- Normalized
- Divisible
- Additive

$egin{aligned} \mathbf{V} & \mathbf{V}_m: \mathcal{I}[0,1] \mapsto \mathbb{R} \end{aligned}$

Say Hi to Agent Magenta!

- Non-negative $\forall l \in \mathcal{I}[0, 1], v_m(l) \ge 0$
- Normalized
- Divisible
- Additive

$V_m: \mathcal{I}[0,1] \mapsto \mathbb{R}$

Say Hi to Agent Magenta!

- Non-negative
- Normalized
 v_m([0, 1]) = 1
- Divisible
- Additive

 $V_m: \mathcal{I}[0,1] \mapsto \mathbb{R}$

Say Hi to Agent Magenta!

- Non-negative
- Normalized
- Divisible For every interval I = [x, y]and $\lambda \in (0, 1)$ There is a subinterval $I' = [x, y'] \subseteq I$ s.t. $v_m(I') = \lambda v_m(I)$
 - Additive

$V_m: \mathcal{I}[0,1] \mapsto \mathbb{R}$

Say Hi to Agent Magenta!

The valuation function v_m is

- Non-negative
- Normalized
- Divisible
- Additive

For every pair of disjoint intervals I and J, $v_m(I \sqcup J) = v_m(I) + v_m(J)$

 $egin{aligned} \mathbf{V}_{m} &: \mathcal{I}[0,1] \mapsto \mathbb{R} \end{aligned}$

Say Hi to Agent Magenta!

- Non-negative
- Normalized
- Divisible
- Additive

An allocation

- Fairly
- Efficiently

An allocation

- Fairly
- Efficiently

But How?

An allocation

- Fairly Envy Freeness (EF)
- Efficiently Nash Social Welfare (NSW)

An allocation

- Fairly Approximate Envy Freeness (EF)
- Efficiently Approximate Nash Social Welfare (NSW)

A Quick Recap

- Exact Envy freeness
- *c*-Additive Approximate Envy Freeness (*c* > 0)
- α -Approximate Envy Freeness ($\alpha > 1$)

• Exact Envy freeness

$\forall a, b, v_a(I_a) \geq v_a(I_b)$

- *c*-Additive Approximate Envy Freeness (*c* > 0)
- α -Approximate Envy Freeness ($\alpha > 1$)

- Exact Envy freeness
- *c*-Additive Approximate Envy Freeness (*c* > 0)

$$\forall a, b, v_a(I_a) \geq v_a(I_b) - c$$

• α -Approximate Envy Freeness ($\alpha > 1$)

- Exact Envy freeness
- *c*-Additive Approximate Envy Freeness (*c* > 0)
- α -Approximate Envy Freeness ($\alpha > 1$)

$$\forall a, b, v_a(I_a) \geq \frac{v_a(I_b)}{\alpha}$$

• NSW of an allocation A:

$NSW(A) = (\Pi_{a \in Agents} v_a(I_a^A))^{1/n}$

- Exact NSW objective : Find allocation A such that
- α -NSW approximation objective : Find an allocation A such that

- NSW of an allocation A:
- Exact NSW objective : Find allocation A such that

 $NSW(A) = \sup_{A' \in Allocations} NSW(A')$

• α -NSW approximation objective : Find an allocation A such that

- NSW of an allocation A:
- Exact NSW objective : Find allocation A such that
- α -NSW approximation objective : Find an allocation A such that

$$NSW(A) \ge \frac{1}{\alpha} \left(\sup_{A' \in Allocations} NSW(A') \right)$$

Our Model

An oracle with two types of queries

- eval(a, [x, y])
- $cut(a, x, \alpha)$

An oracle with two types of queries

- *eval*(*a*, [*x*, *y*])
- $cut(a, x, \alpha)$

Robertson-Webb Model: Eval Query

Robertson-Webb Model : Cut Query

Cut query $cut(a, x, \alpha)$ returns y such that $v_a([x, y]) = \alpha$

- An Efficient algorithm for (3 + o(1))-EF allocations
- (3 + o(1))-NSW allocation.
- (2 + o(1)) EF allocation.
- Briefly mention some of the excluded results.

- An Efficient algorithm for (3 + o(1))-EF allocations
- (3 + o(1))-NSW allocation.
- (2 + o(1)) EF allocation.
- Briefly mention some of the excluded results.

If time permits ...

- An Efficient algorithm for (3 + o(1))-EF allocations
- (3 + o(1))-*NSW* allocation.
- (2 + o(1)) EF allocation.
- Briefly mention some of the excluded results.

If time permits ...

- An Efficient algorithm for (3 + o(1))-EF allocations
- (3 + o(1))-*NSW* allocation.
- (2 + o(1)) EF allocation.
- Briefly mention some of the excluded results.

If time permits...

- An Efficient algorithm for (3 + o(1))-EF allocations
- (3 + o(1))-NSW allocation.
- (2 + o(1)) EF allocation.
- Briefly mention some of the excluded results.

Computing (3 + o(1))-approx EF allocations

Unallocated intervals

 $\mathcal{U}:=\{\textit{U}_1,\textit{U}_2,\textit{U}_3,\textit{U}_4\}$

Allocated Intervals

 $\mathcal{A} := \{I_r, I_b, I_g\}$

Intervals $\mathcal{I} := \mathcal{A} \cup \mathcal{U}$

δ -additive envy

Agent $x \in \{r, g, b\}$ δ -additive envies interval $X \in \mathcal{I}$ if

 $v_x(I_x) < v_x(X) - \delta$

Warmup Questions

Questions

Suppose $|\mathcal{A}| = n$.

- An upper bound on $|\mathcal{U}|$?
- An upper bound on $|\mathcal{I}|$?

Warmup Questions

Questions

Suppose $|\mathcal{A}| = n$.

- An upper bound on $|\mathcal{U}|$? n+1
- An upper bound on $|\mathcal{I}|$? 2n+1

Suppose for a $\delta(n) > 0$ which we choose later

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Suppose for a $\delta(n) > 0$ which we choose later

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Suppose for a $\delta(n) > 0$ which we choose later

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Question

Can some agent r improve its value by more than δ if it swaps I_r with some $U_i \in \mathcal{U}$?

Suppose for a $\delta(n) > 0$ which we choose later

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

No. By definition of δ -additive envy and assumption 2.

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Another Question

Suppose agent r's allocation is expanded from I_r to I'_r (see figure). Upto what additive/multiplicative factors can any other agent b, be envy-free of r.

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

Clearly $I'_r := U_1 \sqcup I_r \sqcup U_2$. Thus for any other agent *s*, using the assumptions and additivity of valuations,

$$3v_s(I_s) + 3\delta \ge v_s(I_r')$$

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Another Question

And if all unassigned intervals are arbitrarily assigned in a similar manner?

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

Yes. For all agents r and s,

$$3v_s(l'_s) + \delta \ge 3v_s(l_s) + \delta$$
$$\ge v_s(l'_r)$$

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Almost

There is still that extra additive term of $\delta.$ We need more clues

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Another Question

What is the minimum value of allocation an arbitrary agent *s* gets?

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

Can you see that the below is implied by assumption 1 and 2?

$$\forall X \in \mathcal{I}, \ v_s(I_s) + \delta \geq v_s(X)$$

Let's sum up this inequality over each $X \in \mathcal{I}$.

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer(Contd)

Here's the result

$$(2n+1)v_s(I_s) \ge 1-2n\delta$$

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer(Contd)

Using $v_s(l'_s) > v_s(l_s)$

$$(2n+1)v_s(I'_s) \ge 1-2n\delta$$

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer(Contd): Allocations have min value

Simplify the above with $\delta = \Omega(1/n^2)$ to get

 $3n\delta v_s(I'_s) > \delta$

for sufficiently large n depending on the constant.

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer(Contd) : Multiplicative Approx

Now we can turn the additive δ in $3v_s(I'_s) + \delta \ge v_s(I'_r)$ into a multiplicative form.

$$(3+n\delta)v_s(I'_s) \ge v_s(I'_r)$$

Thus δ must be chosen as $\Omega(1/n^2)$

Now we are done ... almost

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Procedure NICE-ALLOC

By assigning unallocated intervals to adjacent agents by arbitrary choice in a nice allocation, we get a (3 + o(1))-approximate EF allocation.

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Question

How trivial is it to produce an allocation satisfying assumptions 1 and/or 2?

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Question

How about assumption 1 alone?

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

Easy : Give all agents the empty interval

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Question

And Assumption 2?

Suppose

- 1. No agent δ -additive envies any other agent's allocation.
- 2. No agent δ -additive envies any $X \in \mathcal{U}$.

Answer

Not so easy...

When Only Assumption 1 Holds

Suppose

1. No agent δ -additive envies any other agent's allocation.

When Only Assumption 1 Holds

Suppose

1. No agent δ -additive envies any other agent's allocation.

Meaning?

There is some $U \in \mathcal{U}$ say U_2 , and some agents (say r and b), for whom U is atleast δ units more valuable than their own.

 U_2 is δ -additively envied by r and b

Red's claim is revealed

Blue's claim is also revealed

Blue's claim is also revealed

Question

Who's claim should we choose to allow

Blue's claim is also revealed

Question

Who's claim should we choose to allow

Consideration

The new allocation must respect $\delta\text{-additive envy}$ freeness of agents.

Blue's claim is also revealed

Answer

We honour red's claim. Discuss!

r gets its new interval.

Strictly δ units more valuable than before according to v_r

Procedure SATURATE-ALLOC

If an unassigned interval is δ -additive envied by one or more agents, allocate the least envious agent, the exact amount to satisfy its δ -additive envy.

Question

How many times can SATURATE-ALLOC be run starting from an empty allocation?

Answer

 $O(n^3)$ times. Why?

• Start with empty allocation.

- Agents are $\delta\text{-additive envy}$ free of each other.
- If there is an unallocated interval and an agent who $\delta\text{-additive}$ envies it, then, run SATURATE-ALLOC
- After $O(1/n^3)$ steps, there are no more unallocated intervals to assign.
- Use procedure NICE-ALLOC.

• Start with empty allocation.

- If there is an unallocated interval and an agent who $\delta\text{-additive}$ envies it, then, run SATURATE-ALLOC

- Agents remain $\delta\text{-additive envy}$ free of each other.
- After $O(1/n^3)$ steps, there are no more unallocated intervals to assign.
- Use procedure NICE-ALLOC.

- Start with empty allocation.
- If there is an unallocated interval and an agent who $\delta\text{-additive}$ envies it, then, run SATURATE-ALLOC
- After $O(1/n^3)$ steps, there are no more unallocated intervals to assign.

- Agents remain δ -additive envy free of each other.
- Agents are now $\delta\text{-additive envy}$ free of all unallocated intervals
- Use procedure NICE-ALLOC.

- Start with empty allocation.
- If there is an unallocated interval and an agent who $\delta\text{-additive}$ envies it, then, run SATURATE-ALLOC
- After $O(1/n^3)$ steps, there are no more unallocated intervals to assign.
- Use procedure NICE-ALLOC.

- All agents are (3 + o(1))-envy free
- The algorithm has terminated in $O(n^3)$ steps.

Computing (3 + o(1))-*approx NSW* allocations

Claim

The allocation computed by procedure ALG is a (3 + o(1))-NSW allocation

Recall Nash Social Welfare

For an allocation A of the cake [0, 1] to n agents, with agent a getting interval N_a ,

$$NSW(A) := (\prod_{a \in Agents} v_a(N_a))^{1/n}$$

Claim

The allocation computed by procedure ALG is a (3 + o(1))-NSW allocation

Recall Nash Social Welfare

For an allocation A of the cake [0, 1] to n agents, with agent a getting interval N_a ,

$$NSW(A) := (\prod_{a \in Agents} v_a(N_a))^{1/n}$$

Proof Sketch : Take two allocations

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A* that ALG doesn't know of

Proof Sketch : Take two allocations

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A^* that ALG doesn't know of

Proof Sketch : Take two allocations

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A* that ALG doesn't know of

- N_b is covered by U_2 , I_b , U_3 , and I_g .
- We already have for any X:

$$v_b(I_b) \ge v_b(X) - \delta$$

• Recall that allocations have minimum value:

 $3n\delta v_b(I_b) > \delta$

$$v_b(I_b) \geq 3(1+3\delta)v_b(X)$$

- N_b is covered by U_2 , I_b , U_3 , and I_g .
- We already have for any X:

$$v_b(I_b) \ge v_b(X) - \delta$$

• Recall that allocations have minimum value:

 $3n\delta v_b(I_b) > \delta$

$$v_b(I_b) \geq 3(1+3\delta)v_b(X)$$

- N_b is covered by U_2 , I_b , U_3 , and I_g .
- We already have for any X:

$$v_b(I_b) \ge v_b(X) - \delta$$

• Recall that allocations have minimum value:

 $3n\delta v_b(I_b) > \delta$

$$v_b(I_b) \geq 3(1+3\delta)v_b(X)$$

- N_b is covered by U_2 , I_b , U_3 , and I_g .
- We already have for any X:

• Recall that allocations have minimum value:

 $3n\delta v_b(I_b) > \delta$

$$v_b(I_b) \geq 3(1+3\delta)v_b(X)$$

- N_b is covered by U_2 , I_b , U_3 , and I_g .
- We already have for any X:

$$v_b(I_b) \ge v_b(X) - \delta$$

• Recall that allocations have minimum value:

 $3n\delta v_b(I_b) > \delta$

$$v_b(I_b) \geq 3(1+3\delta)v_b(X$$

Observation

If the A^* allocation for agent r, N_r , spans k_r A-allocated intervals,

$$k_a v(I'_a)(1+3\delta) \ge v(N_a)$$

Remember this

$$k_r v_r(I'_r)(1+3\delta) \geq v(N_r)$$

$$\mathsf{NSW}(\mathsf{A}^*) \leq (1+3\delta) \left(\prod_{r \in \mathsf{Agents}} \mathsf{v}_r(I'_r) \right)^{1/n} \left(\prod_{r \in \mathsf{Agents}} k_r \right)^{1/n}$$

Remember this

$$k_r v_r(I'_r)(1+3\delta) \ge v(N_r)$$

$$\begin{split} \mathsf{NSW}(\mathsf{A}^*) &\leq (1+3\delta) \left(\mathsf{\Pi}_{r \in \mathsf{Agents}} k_r \right)^{1/n} \left(\mathsf{\Pi}_{r \in \mathsf{Agents}} \mathsf{v}_r(\mathsf{I}'_r) \right)^{1/n} \\ &\leq (1+3\delta) \left(\mathsf{\Pi}_{r \in \mathsf{Agents}} k_r \right)^{1/n} \mathsf{NSW}(\mathsf{A}) \end{split}$$

Remember this

$$k_r v_r(I'_r)(1+3\delta) \geq v(N_r)$$

$$\begin{split} \mathsf{NSW}(A^*) &\leq (1+3\delta) \left(\Pi_{r \in Agents} k_r \right)^{1/n} \mathsf{NSW}(A) \\ &\leq (1+3\delta)(3+o(1)) \mathsf{NSW}(A) \\ &\text{if } \left(\Pi_{r \in Agents} k_r \right)^{1/n} = 3 + o(1) \text{ and } \delta = o(1) \end{split}$$

Observation

After applying AM-GM inequality, it suffices to bound the AM of $k^\prime_r s$

- At most 2n + 1 intervals in A.
- At most n 1 intervals appear in the covers of two adjacent NSW intervals in A*.
- Conclusion : $\sum_{r \in Agents} k_r < 3n + 1$
- Conclusion $AM(k'_r s) = 3 + o(1)$.

- At most 2n + 1 intervals in A.
- At most n 1 intervals appear in the covers of two adjacent NSW intervals in A*.
- Conclusion : $\sum_{r \in Agents} k_r < 3n + 1$
- Conclusion $AM(k'_r s) = 3 + o(1)$.

• At most 2n + 1 intervals in A.

- At most n 1 intervals appear in the covers of two adjacent NSW intervals in A*.
- Conclusion : $\sum_{r \in Agents} k_r < 3n + 1$
- Conclusion $AM(k'_r s) = 3 + o(1)$.

- At most 2n + 1 intervals in A.
- At most n 1 intervals appear in the covers of two adjacent NSW intervals in A*.
- Conclusion : $\sum_{r \in Agents} k_r < 3n + 1$
- Conclusion $AM(k'_r s) = 3 + o(1)$.

- At most 2n + 1 intervals in A.
- At most n 1 intervals appear in the covers of two adjacent NSW intervals in A*.
- Conclusion : $\sum_{r \in Agents} k_r < 3n + 1$
- Conclusion $AM(k'_r s) = 3 + o(1)$.

Conclusion : Free (3 + o(1))-**Approx NSW**

Conclusion

 $NSW(A^*) \leq (3 + o(1))NSW(A)$

Computing (2 + o(1)) - approx EF allocations

First we construct a nice $\delta\text{-additive envy}$ free allocation like below.

Then we use procedure NICE-ALLOC to assign the unallocated intervals to neighbours

Recall : There can be n + 1 unallocated intervals

The source of our woes

At least one agent can get 2 unallocated intervals in NICE-ALLOC

Question

Can we ensure that there are only \boldsymbol{n} unallocated intervals in SATURATE-ALLOC

When do we get $\leq n$ unallocated blocks

When do we get $\leq n$ unallocated blocks

Case 1 : One or more allocations are along the edge

When do we get $\leq n$ unallocated blocks

Case 2 : There are adjacent allocations

Case 1 : How should the green unallocated interval be allocated

Case 1 : How should the green unallocated interval be allocated

Solution

Cut from the right of the green interval

Case 2 : How should the green unallocated interval be allocated

Case 2 : How should the green unallocated interval be allocated

Solution

Cut from the right of the green interval

Conclusion

We can use ALG to obtain a (2 + o(1))-approx EF allocation if: whenever allocating a cut of an interval from the left produces (n + 1) unallocated intervals, we allocate a cut from the right.

Things left unsaid

• Even without ALG, if you get an $\alpha\text{-}$

- It is hard to do much better than constant factor approximation of envy freeness for contiguous cake Division. No PTAS expected.
- The results on NSW can be generalised to other kinds of central measures.
- Exact max NSW allocation is hard to compute.

• Even without ALG, if you get an α -

- It is hard to do much better than constant factor approximation of envy freeness for contiguous cake Division. No PTAS expected.
- The results on NSW can be generalised to other kinds of central measures.
- Exact max NSW allocation is hard to compute.

- Even without ALG, if you get an α -
- It is hard to do much better than constant factor approximation of envy freeness for contiguous cake Division. No PTAS expected.
- The results on NSW can be generalised to other kinds of central measures.
- Exact max NSW allocation is hard to compute.

- Even without ALG, if you get an α -
- It is hard to do much better than constant factor approximation of envy freeness for contiguous cake Division. No PTAS expected.
- The results on NSW can be generalised to other kinds of central measures.
- Exact max NSW allocation is hard to compute.

- Even without ALG, if you get an $\alpha\text{--}$
- It is hard to do much better than constant factor approximation of envy freeness for contiguous cake Division. No PTAS expected.
- The results on NSW can be generalised to other kinds of central measures.
- Exact max NSW allocation is hard to compute.

Thank You