
How To Cut Your Cake ... Approximately

Paper: Fair and Efficient Cake Division with Connected Pieces

(WINE 2019)

Authors: E R Arunachaleswaran, S Barman, R Kumar, and N Rathi

Speaker : Shreyas Srinivas

May 28, 2024

CISPA Helmholtz Center for Information Security

[]

1



Understanding the Problem



You have a Cake!

Image by jemastock on Freepik

2

https://www.freepik.com/free-psd/kuchen-isolated-transparent-background_147943583.htm


You have a Cake!

A Computer Scientist’s Cake

3



You have a Cake!

0 1

• In Mathspeak : [0, 1] ⊂ R

• Currently unallocated

4



You have a Cake!

0 1

• In Mathspeak : [0, 1] ⊂ R

• Currently unallocated

4



There are n Agents!

5



The Agents love Cake!

vr : I[0, 1] 7→ R

vg : I 7→ R

vo : I[0, 1] 7→ R vb : I[0, 1] 7→ R

vm : I[0, 1] 7→ RValuations

6



The Agents love Cake!

vr : I[0, 1] 7→ R

vg : I 7→ R

vo : I[0, 1] 7→ R vb : I[0, 1] 7→ R

vm : I[0, 1] 7→ R

Heterogeneous

Valuations

7



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

• Normalized

• Divisible

• Additive

8



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

∀I ∈ I[0, 1], vm(I ) ≥ 0

• Normalized

• Divisible

• Additive

8



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

• Normalized

vm([0, 1]) = 1

• Divisible

• Additive

8



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

• Normalized

• Divisible

For every interval I = [x , y ]

and λ ∈ (0, 1)

There is a subinterval

I ′ = [x , y ′] ⊆ I

s.t. vm(I
′) = λvm(I )

• Additive

8



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

• Normalized

• Divisible

• Additive

For every pair of disjoint

intervals I and J,

vm(I ⊔ J) = vm(I ) + vm(J)

8



The Agents are Reasonable!

vm : I[0, 1] 7→ R

Say Hi to Agent Magenta!

The valuation function vm is

• Non-negative

• Normalized

• Divisible

• Additive

8



Goal

Split the cake into contiguous pieces. One per agent.

Im Ir Io Ig Ib

An allocation

• Fairly

• Efficiently

9



Goal

Split the cake into contiguous pieces. One per agent.

Im Ir Io Ig Ib

An allocation

• Fairly

• Efficiently

But How?

9



Goal

Split the cake into contiguous pieces. One per agent.

Im Ir Io Ig Ib

An allocation

• Fairly Envy Freeness (EF)

• Efficiently Nash Social Welfare (NSW)

9



Goal

Split the cake into contiguous pieces. One per agent.

Im Ir Io Ig Ib

An allocation

• Fairly Approximate Envy Freeness (EF)

• Efficiently Approximate Nash Social Welfare (NSW)

9



A Quick Recap



Fairness Notion : Envy Freeness

• Exact Envy freeness

• c-Additive Approximate Envy Freeness (c > 0)

• α-Approximate Envy Freeness (α > 1)

10



Fairness Notion : Envy Freeness

• Exact Envy freeness

∀a, b, va(Ia) ≥ va(Ib)

• c-Additive Approximate Envy Freeness (c > 0)

• α-Approximate Envy Freeness (α > 1)

10



Fairness Notion : Envy Freeness

• Exact Envy freeness

• c-Additive Approximate Envy Freeness (c > 0)

∀a, b, va(Ia) ≥ va(Ib)− c

• α-Approximate Envy Freeness (α > 1)

10



Fairness Notion : Envy Freeness

• Exact Envy freeness

• c-Additive Approximate Envy Freeness (c > 0)

• α-Approximate Envy Freeness (α > 1)

∀a, b, va(Ia) ≥
va(Ib)

α

10



Efficiency Notion : Maximise Nash Social Welfare (NSW)

• NSW of an allocation A:

NSW (A) = (Πa∈Agentsva(I
A
a ))

1/n

• Exact NSW objective : Find allocation A such that

• α-NSW approximation objective : Find an allocation A such

that

11



Efficiency Notion : Maximise Nash Social Welfare (NSW)

• NSW of an allocation A:

• Exact NSW objective : Find allocation A such that

NSW (A) = sup
A′∈Allocations

NSW (A′)

• α-NSW approximation objective : Find an allocation A such

that

11



Efficiency Notion : Maximise Nash Social Welfare (NSW)

• NSW of an allocation A:

• Exact NSW objective : Find allocation A such that

• α-NSW approximation objective : Find an allocation A such

that

NSW (A) ≥ 1

α

(
sup

A′∈Allocations
NSW (A′)

)

11



Our Model



Robertson-Webb Model

An oracle with two types of queries

• eval(a, [x , y ])

• cut(a, x , α)

12



Robertson-Webb Model

An oracle with two types of queries

• eval(a, [x , y ])

• cut(a, x , α)

12



Robertson-Webb Model: Eval Query

x y

Answer : va([x , y ])

eval(a, [x , y ]) = va([x , y ])

13



Robertson-Webb Model : Cut Query

x Answer : y

α = va([x , y ])

Cut query cut(a, x , α) returns y such that va([x , y ]) = α

14



What’s on the Menu Today

• An Efficient algorithm for (3 + o(1))-EF allocations

• (3 + o(1))-NSW allocation.

• (2 + o(1)) - EF allocation.

• Briefly mention some of the excluded results.

15



What’s on the Menu Today

• An Efficient algorithm for (3 + o(1))-EF allocations

• (3 + o(1))-NSW allocation.

• (2 + o(1)) - EF allocation.

• Briefly mention some of the excluded results.

If time permits...

15



What’s on the Menu Today

• An Efficient algorithm for (3 + o(1))-EF allocations

• (3 + o(1))-NSW allocation.

• (2 + o(1)) - EF allocation.

• Briefly mention some of the excluded results.

If time permits...

15



What’s on the Menu Today

• An Efficient algorithm for (3 + o(1))-EF allocations

• (3 + o(1))-NSW allocation.

• (2 + o(1)) - EF allocation.

• Briefly mention some of the excluded results.

If time permits...

15



What’s on the Menu Today

• An Efficient algorithm for (3 + o(1))-EF allocations

• (3 + o(1))-NSW allocation.

• (2 + o(1)) - EF allocation.

• Briefly mention some of the excluded results.

15



Computing (3 + o(1))-approx EF

allocations



An example allocation : Some useful terms and notation

Ir Ib Ig

U1 U2 U3 U4

16



An example allocation : Some useful terms and notation

Ir Ib Ig

U1 U2 U3 U4

Unallocated intervals

U := {U1,U2,U3,U4}

16



An example allocation : Some useful terms and notation

Ir Ib Ig

U1 U2 U3 U4

Allocated Intervals

A := {Ir , Ib, Ig}

16



An example allocation : Some useful terms and notation

Ir Ib Ig

U1 U2 U3 U4

Intervals

I := A ∪ U

16



An example allocation : Some useful terms and notation

Ir Ib Ig

U1 U2 U3 U4

δ-additive envy

Agent x ∈ {r , g , b} δ-additive envies interval X ∈ I if

vx(Ix) < vx(X )− δ

16



Warmup Questions

Ir Ib Ig

U1 U2 U3 U4

Questions

Suppose |A| = n.

• An upper bound on |U|?
• An upper bound on |I|?

17



Warmup Questions

Ir Ib Ig

U1 U2 U3 U4

Questions

Suppose |A| = n.

• An upper bound on |U|? n + 1

• An upper bound on |I|? 2n + 1

17



A nice example allocation: Are we done?

Ir Ib Ig

U1 U2 U3 U4

Suppose for a δ(n) > 0 which we

choose later

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

18



A nice example allocation: Are we done?

Ir Ib Ig

U1 U2 U3 U4

Suppose for a δ(n) > 0 which we

choose later

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

18



A nice example allocation: Are we done?

Ir Ib Ig

U1 U2 U3 U4

Suppose for a δ(n) > 0 which we

choose later

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Question

Can some agent r improve its value by more than δ if it swaps Ir

with some Ui ∈ U?

18



A nice example allocation: Are we done?

Ir Ib Ig

U1 U2 U3 U4

Suppose for a δ(n) > 0 which we

choose later

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

No. By definition of δ-additive envy and assumption 2.

18



A nice example allocation: Are we done?

I ′r Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Another Question

Suppose agent r ’s allocation is expanded from Ir to I ′r (see

figure). Upto what additive/multiplicative factors can any other

agent b, be envy-free of r .

19



A nice example allocation: Are we done?

I ′r Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

Clearly I ′r := U1 ⊔ Ir ⊔ U2. Thus for any other agent s, using the

assumptions and additivity of valuations,

3vs(Is) + 3δ ≥ vs(I
′
r )

19



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Another Question

And if all unassigned intervals are arbitrarily assigned in a similar

manner?

20



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

Yes. For all agents r and s,

3vs(I
′
s) + δ ≥ 3vs(Is) + δ

≥ vs(I
′
r )

20



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Almost

There is still that extra additive term of δ. We need more clues

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Another Question

What is the minimum value of allocation an arbitrary agent s

gets?

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

Can you see that the below is implied by assumption 1 and 2?

∀X ∈ I, vs(Is) + δ ≥ vs(X )

Let’s sum up this inequality over each X ∈ I.

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer(Contd)

Here’s the result

(2n + 1)vs(Is) ≥ 1− 2nδ

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer(Contd)

Using vs(I
′
s) > vs(Is)

(2n + 1)vs(I
′
s) ≥ 1− 2nδ

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer(Contd): Allocations have min value

Simplify the above with δ = Ω(1/n2) to get

3nδvs(I
′
s) > δ

for sufficiently large n depending on the constant.

21



A nice example allocation: Are we done?

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer(Contd) : Multiplicative Approx

Now we can turn the additive δ in 3vs(I
′
s) + δ ≥ vs(I

′
r ) into a

multiplicative form.

(3 + nδ)vs(I
′
s) ≥ vs(I

′
r )

Thus δ must be chosen as Ω(1/n2)

21



Now we are done ... almost

I′r I ′b I ′g

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Procedure NICE-ALLOC

By assigning unallocated intervals to adjacent agents by arbitrary

choice in a nice allocation, we get a (3 + o(1))-approximate EF

allocation.

22



About those assumptions...

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Question

How trivial is it to produce an allocation satisfying assumptions 1

and/or 2?

23



About those assumptions...

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Question

How about assumption 1 alone?

23



About those assumptions...

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

Easy : Give all agents the empty interval

23



About those assumptions...

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Question

And Assumption 2?

23



About those assumptions...

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

2. No agent δ-additive envies

any X ∈ U .

Answer

Not so easy...

23



When Only Assumption 1 Holds

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

24



When Only Assumption 1 Holds

Ir Ib Ig

U1 U2 U3 U4

Suppose

1. No agent δ-additive envies

any other agent’s allocation.

Meaning?

There is some U ∈ U say U2, and some agents (say r and b), for

whom U is atleast δ units more valuable than their own.

24



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

U2 is δ-additively envied by r and b

25



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Red’s claim is revealed

26



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Blue’s claim is also revealed

27



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Blue’s claim is also revealed

Question

Who’s claim should we choose to allow

27



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Blue’s claim is also revealed

Question

Who’s claim should we choose to allow

Consideration

The new allocation must respect δ-additive envy freeness of

agents.
27



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Blue’s claim is also revealed

Answer

We honour red’s claim. Discuss!

27



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

r gets its new interval.

Strictly δ units more valuable than before according to vr

28



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Procedure SATURATE-ALLOC

If an unassigned interval is δ-additive envied by one or more

agents, allocate the least envious agent, the exact amount to

satisfy its δ-additive envy.

29



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Question

How many times can SATURATE-ALLOC be run starting from

an empty allocation?

30



Allocating an unallocated interval U2

Ir Ib Ig

U1 U2 U3 U4

Answer

O(n3) times. Why?

30



Putting it all together: Procedure ALG

• Start with empty allocation.

What’s Applicable

• Agents are δ-additive envy free of each other.

• If there is an unallocated interval and an agent who δ-additive

envies it, then, run SATURATE-ALLOC

• After O(1/n3) steps, there are no more unallocated intervals

to assign.

• Use procedure NICE-ALLOC.

31



Putting it all together: Procedure ALG

• Start with empty allocation.

• If there is an unallocated interval and an agent who δ-additive

envies it, then, run SATURATE-ALLOC

What’s Applicable

• Agents remain δ-additive envy free of each other.

• After O(1/n3) steps, there are no more unallocated intervals

to assign.

• Use procedure NICE-ALLOC.

31



Putting it all together: Procedure ALG

• Start with empty allocation.

• If there is an unallocated interval and an agent who δ-additive

envies it, then, run SATURATE-ALLOC

• After O(1/n3) steps, there are no more unallocated intervals

to assign.

What’s Applicable

• Agents remain δ-additive envy free of each other.

• Agents are now δ-additive envy free of all unallocated intervals

• Use procedure NICE-ALLOC.

31



Putting it all together: Procedure ALG

• Start with empty allocation.

• If there is an unallocated interval and an agent who δ-additive

envies it, then, run SATURATE-ALLOC

• After O(1/n3) steps, there are no more unallocated intervals

to assign.

• Use procedure NICE-ALLOC.

What’s Applicable

• All agents are (3 + o(1))-envy free

• The algorithm has terminated in O(n3) steps.

31



Computing (3 + o(1))-approx NSW

allocations



(3 + o(1))-NSW allocation for free

Claim

The allocation computed by procedure ALG is a (3 + o(1))-NSW

allocation

Recall Nash Social Welfare

For an allocation A of the cake [0, 1] to n agents, with agent a

getting interval Na,

NSW (A) := (Πa∈Agentsva(Na))
1/n

32



(3 + o(1))-NSW allocation for free

Claim

The allocation computed by procedure ALG is a (3 + o(1))-NSW

allocation

Recall Nash Social Welfare

For an allocation A of the cake [0, 1] to n agents, with agent a

getting interval Na,

NSW (A) := (Πa∈Agentsva(Na))
1/n

32



Proof Sketch : Take two allocations

I′r I ′b I ′g

U1 U2 U3 U4

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A∗ that ALG doesn’t know of

33



Proof Sketch : Take two allocations

I′r I ′b I ′g

U1 U2 U3 U4

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A∗ that ALG doesn’t know of

Question

How would you estimate NSW (A∗) from A?

33



Proof Sketch : Take two allocations

I′r I ′b I ′g

U1 U2 U3 U4

A nice allocation A computed by ALG before NICE-ALLOC is applied

An Optimal NSW allocation A∗ that ALG doesn’t know of

Hint

Both allocations are being done on the same cake.

33



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

34



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

• Nb is covered by U2, Ib, U3, and Ig .

• We already have for any X :

vb(Ib) ≥ vb(X )− δ

• Recall that allocations have

minimum value:

3nδvb(Ib) > δ

• Thus taken over all covering

intervals

vb(Ib) ≥ 3(1 + 3δ)vb(X )

35



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

• Nb is covered by U2, Ib, U3, and Ig .

• We already have for any X :

vb(Ib) ≥ vb(X )− δ

• Recall that allocations have

minimum value:

3nδvb(Ib) > δ

• Thus taken over all covering

intervals

vb(Ib) ≥ 3(1 + 3δ)vb(X )

35



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

• Nb is covered by U2, Ib, U3, and Ig .

• We already have for any X :

vb(Ib) ≥ vb(X )− δ

• Recall that allocations have

minimum value:

3nδvb(Ib) > δ

• Thus taken over all covering

intervals

vb(Ib) ≥ 3(1 + 3δ)vb(X )

35



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

• Nb is covered by U2, Ib, U3, and Ig .

• We already have for any X :

vb(Ib) ≥ vb(X )− δ

• Recall that allocations have

minimum value:

3nδvb(Ib) > δ

• Thus taken over all covering

intervals

vb(Ib) ≥ 3(1 + 3δ)vb(X )

35



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

• Nb is covered by U2, Ib, U3, and Ig .

• We already have for any X :

vb(Ib) ≥ vb(X )− δ

• Recall that allocations have

minimum value:

3nδvb(Ib) > δ

• Thus taken over all covering

intervals

vb(Ib) ≥ 3(1 + 3δ)vb(X )

35



Proof Sketch : Approximate one with the other

Nb

Ir Ib Ig

U1 U2 U3 U4

Observation

If the A∗ allocation for agent r , Nr ,

spans kr A-allocated intervals,

kav(I
′
a)(1 + 3δ) ≥ v(Na)

36



Proof Sketch : A bit of tedious math

Remember this

krvr (I
′
r )(1 + 3δ) ≥ v(Nr )

NSW (A∗) ≤ (1 + 3δ)
(
Πr∈Agentsvr (I

′
r )
)1/n

(Πr∈Agentskr )
1/n

37



Proof Sketch : A bit of tedious math

Remember this

krvr (I
′
r )(1 + 3δ) ≥ v(Nr )

NSW (A∗) ≤ (1 + 3δ) (Πr∈Agentskr )
1/n (Πr∈Agentsvr (I

′
r )
)1/n

≤ (1 + 3δ) (Πr∈Agentskr )
1/n NSW (A)

38



Proof Sketch : A bit of tedious math

Remember this

krvr (I
′
r )(1 + 3δ) ≥ v(Nr )

NSW (A∗) ≤ (1 + 3δ) (Πr∈Agentskr )
1/n NSW (A)

≤ (1 + 3δ)(3 + o(1))NSW (A)

if (Πr∈Agentskr )
1/n = 3 + o(1) and δ = o(1)

39



Bounding the Geometric Mean of kr ’s

Observation

After applying AM-GM inequality, it suffices to bound the AM of

k ′r s

40



Bounding the Arithmetic Mean of kr ’s

Nb

Ir Ib Ig

U1 U2 U3 U4

• At most 2n + 1 intervals in A.

• At most n − 1 intervals appear in

the covers of two adjacent NSW

intervals in A∗.

• Conclusion : Σr∈Agentskr < 3n + 1

• Conclusion AM(k ′r s) = 3 + o(1).

41



Bounding the Arithmetic Mean of kr ’s

Nb

Ir Ib Ig

U1 U2 U3 U4

• At most 2n + 1 intervals in A.

• At most n − 1 intervals appear in

the covers of two adjacent NSW

intervals in A∗.

• Conclusion : Σr∈Agentskr < 3n + 1

• Conclusion AM(k ′r s) = 3 + o(1).

41



Bounding the Arithmetic Mean of kr ’s

Nb

Ir Ib Ig

U1 U2 U3 U4

• At most 2n + 1 intervals in A.

• At most n − 1 intervals appear in

the covers of two adjacent NSW

intervals in A∗.

• Conclusion : Σr∈Agentskr < 3n + 1

• Conclusion AM(k ′r s) = 3 + o(1).

41



Bounding the Arithmetic Mean of kr ’s

Nb

Ir Ib Ig

U1 U2 U3 U4

• At most 2n + 1 intervals in A.

• At most n − 1 intervals appear in

the covers of two adjacent NSW

intervals in A∗.

• Conclusion : Σr∈Agentskr < 3n + 1

• Conclusion AM(k ′r s) = 3 + o(1).

41



Bounding the Arithmetic Mean of kr ’s

Nb

Ir Ib Ig

U1 U2 U3 U4

• At most 2n + 1 intervals in A.

• At most n − 1 intervals appear in

the covers of two adjacent NSW

intervals in A∗.

• Conclusion : Σr∈Agentskr < 3n + 1

• Conclusion AM(k ′r s) = 3 + o(1).

41



Conclusion : Free (3 + o(1))-Approx NSW

Nb

Ir Ib Ig

U1 U2 U3 U4

Conclusion

NSW (A∗) ≤ (3 + o(1))NSW (A)

42



Computing (2 + o(1))− approx EF

allocations



Look back at (3 + o(1))-EF

First we construct a nice δ-additive envy free allocation like below.

Ir Ib Ig

U1 U2 U3 U4

43



Look back at (3 + o(1))-EF

Then we use procedure NICE-ALLOC to assign the unallocated

intervals to neighbours

I′r I ′b I ′g

U1 U2 U3 U4

44



The source of our 3-factor approx

Let’s rollback a bit to before we apply NICE-ALLOC.

45



The source of our 3-factor approx

Let’s rollback a bit to before we apply NICE-ALLOC.

Ir Ib Ig

U1 U2 U3 U4

45



The source of our 3-factor approx

Let’s rollback a bit to before we apply NICE-ALLOC.

Ir Ib Ig

U1 U2 U3 U4

Recall : There can be n + 1 unallocated intervals

The source of our woes

At least one agent can get 2 unallocated intervals in

NICE-ALLOC

45



The source of our 3-factor approx

Let’s rollback a bit to before we apply NICE-ALLOC.

Ir Ib Ig

U1 U2 U3 U4

Question

Can we ensure that there are only n unallocated intervals in

SATURATE-ALLOC

45



When do we get ≤ n unallocated blocks

46



When do we get ≤ n unallocated blocks

Ir Ib Ig

U1 U2 U3

Case 1 : One or more allocations are along the edge

46



When do we get ≤ n unallocated blocks

Ir Ib Ig

U1 U2 U3

Case 2 : There are adjacent allocations

46



Adapting SATURATE-ALLOC

Ir Ib Ig

U1 U2 U3

Case 1 : How should the green unallocated interval be allocated

47



Adapting SATURATE-ALLOC

Ir Ib Ig

U1 U2 U3

Case 1 : How should the green unallocated interval be allocated

Solution

Cut from the right of the green interval

47



Adapting SATURATE-ALLOC

Ir Ib Ig

U1 U2 U3

Case 2 : How should the green unallocated interval be allocated

48



Adapting SATURATE-ALLOC

Ir Ib Ig

U1 U2 U3

Case 2 : How should the green unallocated interval be allocated

Solution

Cut from the right of the green interval

48



Conclusion

Conclusion

We can use ALG to obtain a (2 + o(1))-approx EF allocation if:

whenever allocating a cut of an interval from the left produces

(n + 1) unallocated intervals, we allocate a cut from the right.

49



Things left unsaid



Things I left out

• Even without ALG, if you get an α-

• It is hard to do much better than constant factor

approximation of envy freeness for contiguous cake Division.

No PTAS expected.

• The results on NSW can be generalised to other kinds of

central measures.

• Exact max NSW allocation is hard to compute.

50



Things I left out

• Even without ALG, if you get an α-

• It is hard to do much better than constant factor

approximation of envy freeness for contiguous cake Division.

No PTAS expected.

• The results on NSW can be generalised to other kinds of

central measures.

• Exact max NSW allocation is hard to compute.

50



Things I left out

• Even without ALG, if you get an α-

• It is hard to do much better than constant factor

approximation of envy freeness for contiguous cake Division.

No PTAS expected.

• The results on NSW can be generalised to other kinds of

central measures.

• Exact max NSW allocation is hard to compute.

50



Things I left out

• Even without ALG, if you get an α-

• It is hard to do much better than constant factor

approximation of envy freeness for contiguous cake Division.

No PTAS expected.

• The results on NSW can be generalised to other kinds of

central measures.

• Exact max NSW allocation is hard to compute.

50



Things I left out

• Even without ALG, if you get an α-

• It is hard to do much better than constant factor

approximation of envy freeness for contiguous cake Division.

No PTAS expected.

• The results on NSW can be generalised to other kinds of

central measures.

• Exact max NSW allocation is hard to compute.

50



Thank You


	Understanding the Problem
	A Quick Recap
	Our Model
	Computing (3 + o(1))-approx EF allocations
	Computing (3 + o(1))-approx NSW allocations
	Computing (2 + o(1))-approx EF allocations
	Things left unsaid
	Thank You

